Skip to main content
Log in

Multiple channel access techniques in industrial IoT: evaluation case of time-slotted channel hopping

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The Time Slotted Channel Hopping (TSCH) protocol, defined in the IEEE 802.15.4 standard, is tailored to meet the stringent communication requirements of industrial applications. TSCH combines Time Division Multiple Access (TDMA) and Frequency Division Multiple Access (FDMA) to efficiently allocate resources and schedule communications in IoT networks. In this paper, we conduct a comparative performance assessment of TSCH-based schedulers under varying traffic loads and patterns using the COOJA emulator. Our study focuses on two schedulers for TSCH: Minimal Scheduling and Orchestra, which includes two key variants - Orchestra Sender Based Shared (O-SBS) and Orchestra Receiver Based Shared (O-RBS). To comprehensively assess their performance in IoT networks, we conduct an in-depth evaluation across multiple key parameters: Packet Delivery and Acknowledgment Ratios, Radio-On duty cycle, End-to-End Latency, Stability, and Embedded Firmware’s Memory footprint. Our results indicate that Orchestra SBS excels in ensuring high reliability and low latency in high-traffic scenarios. Meanwhile, TSCH Minimal Scheduling exhibits superior energy efficiency, and it boasts a smaller embedded firmware memory footprint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Algorithm 1
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ekpenyong, M. E., Asuquo, D. E., Udo, I. J., Robinson, S. A., & Ijebu, F. F. (2022). IPv6 routing protocol enhancements over low-power and lossy networks for IoT applications: A systematic review. New Review of Information Networking, 27(1), 30–68.

    Article  Google Scholar 

  2. Pister, K. & Doherty, L. (2008). TSMP: Time synchronized mesh protocol. IASTED distributed sensor networks (pp. 391–398).

  3. Stanislowski, D., Vilajosana, X., Wang, Q., Watteyne, T., & Pister, K. S. (2013). Adaptive synchronization in IEEE802.15.4-e networks. IEEE Transactions on Industrial Informatics, 10(1), 795–802.

    Article  Google Scholar 

  4. Elsts, A. & Al. (2016). Microsecond-accuracy time synchronization using the IEEE 802.15.4 TSCH protocol. In IEEE LCN Workshops (pp. 156–164).

  5. IEEE. (2020). IEEE 802.15.4-2020 standard for low-rate wireless networks.

  6. Terai, K., Anzai, D., Lee, K., Yanagihara, K., & Hara, S. (2012). WirelessHART: Real-time mesh network for industrial automation. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 95(4), 723–734.

    Article  Google Scholar 

  7. IEEE Computer Society. (2012). IEEE standard for information technology, 802.15.4e, Part. 15.4: low-rate wireless personal area networks (LR-WPANs) Amendment 1: MAC sublayer. IEEE Computer Society.

  8. Elsts, A., Fafoutis, X., Woznowski, P., Tonkin, E., Oikonomou, G., Piechocki, R., & Craddock, I. (2018). Enabling healthcare in smart homes: The SPHERE IoT network infrastructure. IEEE Communications Magazine, 56(12), 164–170.

    Article  Google Scholar 

  9. Tsiftes, N., Duquennoy, S., Voigt, T., Ahmed, M. U., Kockemann, U., & Loutfi, A. (2016). The E-Care@ Home infrastructure for IoT-enabled healthcare. In Internet of things technologies for healthcare: third international conference, HealthyIoT 2016, Vasteras, Sweden, October 18–19, 2016, Revised Selected Papers 3 (pp. 138–140). Springer International Publishing.

  10. Brun-Laguna, K., Diedrichs, A. L., Dujovne, D., Taffernaberry, C., Leone, R., Vilajosana, X., & Watteyne, T. (2018). Using SmartMesh IP in smart agriculture and smart building applications. Computer Communications, 121, 83–90.

    Article  Google Scholar 

  11. Watteyne, T., Diedrichs, A. L., Brun-Laguna, K., Chaar, J. E., Dujovne, D., Taffernaberry, J. C. & Mercado, G. (2016). PEACH: Predicting frost events in peach orchards using IoT technology. EAI Endorsed Trans. Internet Things, 2(5).

  12. Vatankhah, A., & Liscano, R. (2022). Differential evolution optimization of TSCH scheduling for heterogeneous sensor networks. In 2022 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1491–1496). IEEE.

  13. Chang, T., Vucinic, M., Vilajosana, X., Duquennoy, S. & Dujovne, D. (2019). 6TiSCH Minimal Scheduling Function (MSF). Draft-chang-6tisch-msf, IETF, Internet Draft.

  14. Kosunalp, S., & Kaya, Y. (2022). IoT–TDMA: A performance evaluation of TDMA scheme for wireless sensor networks with Internet of Things. Concurrency and Computation: Practice and Experience, 34(21), e7063.

    Article  Google Scholar 

  15. Pan, H., & Liew, S. C. (2020). Information update: TDMA or FDMA? IEEE Wireless Communications Letters, 9(6), 856–860. https://doi.org/10.1109/LWC.2020.2973384

    Article  Google Scholar 

  16. Ha, Y., & Chung, S.-H. (2022). Traffic-aware 6TiSCH routing method for IoT wireless networks. IEEE Internet of Things Journal, 9(22), 22709–22722. https://doi.org/10.1109/JIOT.2022.3184310

    Article  Google Scholar 

  17. Rugamba, J. P. G., Mai, D. L., & Kim, M. K. (2019). Implementation of a Centralized Scheduling Algorithm for IEEE 802.15.4e TSCH. In Intelligent Computing Methodologies. ICIC, Lecture Notes in Computer Science, (vol. 11645). Cham: Springer.

  18. Eloudrhiri Hassani, A., Sahel, A., & Badri, A. (2021). IRH-OF: A new objective function for RPL routing protocol in IoT applications. Wireless Personal Communications, 119, 673–689. https://doi.org/10.1007/s11277-021-08230-8

    Article  Google Scholar 

  19. Righetti, F., Vallati, C., Das, S. K. & Anastasi, G. (2019). An experimental evaluation of the stop protocol for industrial IoT applications. In IEEE symposium on computers and communications (ISCC) (pp. 1–6). https://doi.org/10.1109/ISCC47284.2019.8969590

  20. Dinh, T., Kim, Y., Gu, T., & Vasilakos, A. V. (2018). An adaptive low-power listening protocol for wireless sensor networks in noisy environments. IEEE Systems Journal, 12(3), 2162–2173. https://doi.org/10.1109/JSYST.2017.2720781

    Article  Google Scholar 

  21. Zacharias, S., & Newe, T. (2011). Competition at the wireless sensor network MAC layer: Low power probing interfering with X-MAC. Journal of Physics: Conference Series, 307, 012038. https://doi.org/10.1088/1742-6596/307/1/012038

    Article  Google Scholar 

  22. Vilajosana, X., Pister, K., & Watteyne, T. (2017). Minimal IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration. RFC 8180. Available online: https://www.rfc-editor.org/info/rfc8180

  23. Chang, T., Vucinic, M., Vilajosana, X., Duquennoy, S., & Dujovne, D. RFC9033: 6TiSCH Minimal Scheduling Function (MSF). Internet Engineering Task Force RFC series, 2021. ffhal-02407587v1f.

  24. Duquennoy, S., Al Nahas, B., Landsiedel, O. & Watteyne, T. (2015). Orchestra: Robust Mesh Networks Through Autonomously Scheduled TSCH. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems (SenSys ’15) (pp. 337–350). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/2809695.2809714

  25. Yuan, L., Wu, T. & Zhou, A. (2022). Performance Research of ALOHA Protocol. In Proceedings of the 7th international conference on cyber security and information engineering (ICCSIE ’22) (pp. 84–88). New York, NY, USA: Association for Computing Machinery.

  26. Palattella, M. R., Accettura, N., Dohler, Grieco, L. A. & Boggia, G. (2012). Traffic aware scheduling algorithm for reliable low-power multi-hop IEEE 802.15.4e networks. In 23rd IEEE international symposium on personal, indoor and mobile radio communications, PIMRC, Sydney, Australiahttps://doi.org/10.1109/PIMRC.2012.6362805

  27. Soua, R., Minet, P. & Livolant, E. (2012). MODESA: An optimized multichannel slot assignment for raw data convergecast in wireless sensor networks. In IEEE international performance computing and communications conference IPCCC, Austin, TX, USA, (pp. 91–100). https://doi.org/10.1109/PCCC.2012.6407742

  28. Soua, R., Livolant, E. & Minet, P. (2013). MUSIKA: A multichannel multi-sink data gathering algorithm in wireless sensor networks. In 9th international wireless communications and mobile computing conference, IWCMC, Sardinia, Italy (pp. 1370–1375). https://doi.org/10.1109/IWCMC.2013.6583756

  29. Jeong, S., Paek, J., Kim, H. S., & Bahk, S. (2019). TESLA: Traffic-aware elastic slotframe adjustment in TSCH networks. IEEE Access, 7, 130468–130483.

    Article  Google Scholar 

  30. Deac, D., Teshome, E., Van Glabbeek, R., Dobrota, V., Braeken, A., & Steenhaut, K. (2022). Traffic aware scheduler for time-slotted channel-hopping-based IPv6 wireless sensor networks. Sensors, 22(17), 6397. https://doi.org/10.3390/s22176397

    Article  Google Scholar 

  31. Rekik, S., Baccour, N., Jmaiel, J., Drira, K., & Grieco, L. A. (2018). Autonomous and traffic-aware scheduling for TSCH networks. Computer Networks, 135, 201–212. https://doi.org/10.1016/j.comnet.2018.02.023

    Article  Google Scholar 

  32. Kim, S., Kim, H. S., & Kim, C. K. (2021). A3: Adaptive autonomous allocation of TSCH slots. In Proceedings of the 20th international conference on information processing in sensor networks (co-located with CPS-IoT Week 2021) (pp. 299–314). https://doi.org/10.1145/3412382.3458273

  33. Oh, S., Hwang, D., Kim, K.-H., & Kim, K. (2018). Escalator: An autonomous scheduling scheme for convergecast in TSCH. Sensors, 18(4), 1209.

    Article  Google Scholar 

  34. Kim, S., Kim, H. S., & Kim, C.(2019). ALICE: autonomous link-based cell scheduling for TSCH. In Proceedings of the 18th international conference on information processing in sensor networks (IPSN ’19) (pp. 121–132). https://doi.org/10.1145/3302506.3310394

  35. Tavallaie, O. Taheri, J. & Zomaya, A. Y. (2021). Design and optimization of traffic-aware TSCH scheduling for mobile 6TiSCH networks. In Proceedings of the international conference on Internet-of-Things design and implementation (IoTDI ’21) (pp. 234–246). https://doi.org/10.1145/3450268.3453523

  36. Michaelides, C., Adame, T. & Bellalta, B. (2021). ECTS: Enhanced Centralized TSCH Scheduling with Packet Aggregation for Industrial IoT. In IEEE conference on standards for communications and networking (CSCN) (pp. 40–45). https://doi.org/10.1109/CSCN53733.2021.9686162

  37. Dunkels, A. (2011). The ContikiMAC Radio Duty Cycling Protocol. Swedish Institute of Computer Science.

    Google Scholar 

  38. Oikonomou, G., Duquennoy, S., Elsts, A., Eriksson, J., Tanaka, Y., & Tsiftes, N. (2022). The Contiki-NG open source operating system for next generation IoT devices. SoftwareX, 18, 101089.

    Article  Google Scholar 

  39. Kim, H. S. & Al. (2018). System architecture directions for post-soc/32-bit networked sensors. In ACM SenSys (pp. 264–277).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhadi Eloudrhiri Hassani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eloudrhiri Hassani, A., Sahel, A., Badri, A. et al. Multiple channel access techniques in industrial IoT: evaluation case of time-slotted channel hopping. Wireless Netw (2024). https://doi.org/10.1007/s11276-024-03707-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-024-03707-3

Keywords

Navigation