Skip to main content
Log in

On performance of a full duplex SWIPT enabled cooperative NOMA network

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper investigates a novel full-duplex (FD) simultaneous wireless information and power transfer (SWIPT) based cooperative non-orthogonal multiple access (FDS-NOMA) system, where far distant NOMA IoT users are helped by the NOMA strong user with the capability of energy harvesting (EH) and FD communications. The downlink (DL-NOMA) principle is used to transmit the superimposed signals from source i.e a base station (BS) to an energy-limited FD relay where relay harvests energy from the transmit power of the BS. The relay after detecting the superimposed signals using successive interference cancellation (SIC), retransmits the decoded signals using superposition coding to the IoT users. We derive the analytical expressions of the outage probability and ergodic rates experienced by the NOMA strong user as well as NOMA IoT users. The results shows that proposed cooperative NOMA scheme can be used to serve IoT users using EH relay. Extensive simulations are performed to verify the accuracy of the derived approximate closed-from expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. U2 and U3 are considered as IoT nodes.

References

  1. Dai, L., Wang, B., Ding, Z., Wang, Z., Chen, S., & Hanzo, L. (2018). A survey of non-orthogonal multiple sccess for 5G. IEEE Communications Surveys and Tutorials, 20(3), 2294–2323. https://doi.org/10.1109/COMST.2018.2835558

    Article  Google Scholar 

  2. Wunder, G., et al. (2014). 5GNOW: Non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Communications Magazine, 52(2), 97–105. https://doi.org/10.1109/MCOM.2014.6736749

    Article  Google Scholar 

  3. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Higuchi non-orthogonal multiple access (NOMA) for cellular future radio access, In 2013 IEEE 77th vehicular technology conference (VTC Spring).

  4. Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., Chih-Lin, I., & Poor, H. V. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55(2), 185–191. https://doi.org/10.1109/MCOM.2017.1500657

    Article  Google Scholar 

  5. Wei, Z., Yuan, J., Ng, D. W. K., Elkashlan, M., Ding, Z. (2016). A survey of downlink non-orthogonal multiple access for 5G wireless communication networks. Available: arxiv:1609.0186.

  6. Dang, H., Van Nguyen, M., Do, D., Pham, H., Selim, B., & Kaddoum, G. (2020). Joint relay selection, full-duplex and device-to-device transmission in wireless powered NOMA networks. IEEE Access, 8, 82442–82460. https://doi.org/10.1109/ACCESS.2020.2991847

    Article  Google Scholar 

  7. Rauniyar, A., Engelstad, P., Ësterb, O. N. (2018). RF energy harvesting and information transmission based on power splitting and NOMA for IoT Relay Systems, in 2018 IEEE 17th international symposium on network computing and applications (NCA), pp. 1–8, https://doi.org/10.1109/NCA.2018.8548068.

  8. Do, D.-T., Le, C.-B., & Afghah, F. (2020). Enabling full-duplex and energy harvesting in uplink and downlink of small-cell network relying on power domain based multiple access. IEEE Access, 8, 142772–142784. https://doi.org/10.1109/ACCESS.2020.3013912

    Article  Google Scholar 

  9. Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. K. (2017). A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE Journal on Selected Areas in Communications, 35(10), 2181–2195. https://doi.org/10.1109/JSAC.2017.2725519

    Article  Google Scholar 

  10. Wu, Q., Chen, W., Ng, D. W. K., & Schober, R. (2018). Spectral and energy-efficient wireless powered iot networks: NOMA or TDMA? IEEE Transactions on Vehicular Technology, 67(7), 6663–6667. https://doi.org/10.1109/TVT.2018.2799947

    Article  Google Scholar 

  11. Zeng, M., Yadav, A., Dobre, O. A., & Poor, H. V. (2017). A fair individual rate comparison between MIMO-NOMA and MIMO-OMA. IEEE Globecom Workshops (GC Wkshps), 2017, 1–5. https://doi.org/10.1109/GLOCOMW.2017.8269085

    Article  Google Scholar 

  12. Timotheou, S., & Krikidis, I. (2015). Fairness for non-orthogonal multiple access in 5G systems. IEEE Signal Processing Letters, 22(10), 1647–1651. https://doi.org/10.1109/LSP.2015.2417119

    Article  Google Scholar 

  13. Huang, K., & Lau, V. K. N. (2012). Enabling wireless power transfer in cellular networks: Architecture modeling and deployment. EEE Journal on Selected Areas in Communications, 13(2), 902–912.

    Google Scholar 

  14. Varshney, L. R. (2008). Transporting information and energy simultaneously. IEEE International Symposium on Information Theory, 2008, 1612–1616. https://doi.org/10.1109/ISIT.2008.4595260

    Article  Google Scholar 

  15. Grover, P., & Sahai, A. (2010). Shannon meets Tesla: Wireless information and power transfer. IEEE International Symposium on Information Theory, 2010, 2363–2367. https://doi.org/10.1109/ISIT.2010.5513714

    Article  Google Scholar 

  16. Fouladgar, A. M., & Simeone, O. (2012). On the transfer of information and energy in multi-user systems. IEEE Communications Letters, 16(11), 1733–1736. https://doi.org/10.1109/LCOMM.2012.091212.121660

    Article  Google Scholar 

  17. Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465. https://doi.org/10.1109/LCOMM.2015.2441064

    Article  Google Scholar 

  18. Men, J., & Ge, J. (2015). Non-orthogonal multiple access for multiple-antenna relaying networks. IEEE Communications Letters, 19(10), 1686–1689. https://doi.org/10.1109/LCOMM.2015.2472006

    Article  Google Scholar 

  19. Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953. https://doi.org/10.1109/JSAC.2016.2549378

    Article  Google Scholar 

  20. Zhang, Z., Ma, Z., Xiao, M., Ding, Z., & Fan, P. (2017). Full-duplex device-to-device-aided cooperative non-orthogonal multiple access. IEEE Transactions on Vehicular Technology, 66(5), 4467–4471. https://doi.org/10.1109/TVT.2016.2600102

    Article  Google Scholar 

  21. Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767. https://doi.org/10.1109/TCOMM.2013.13.120855

    Article  Google Scholar 

  22. Guo, C., Zhao, L., Feng, C., Ding, Z., & Chen, H. (2019). Energy harvesting enabled NOMA systems with full-duplex relaying. IEEE Transactions on Vehicular Technology, 68(7), 7179–7183. https://doi.org/10.1109/TVT.2019.2914508

    Article  Google Scholar 

  23. Nguyen, B. C., et al. (2020). Outage probability of NOMA system with wireless power transfer at source and full-duplex relay. AEU-International Journal of Electronics and Communications, 116, 152957.

    Google Scholar 

  24. Hoang, T. M., Nguyen, B. C., & Trung, T. T. (2020). Outage and throughput analysis of power-beacon assisted nonlinear energy harvesting NOMA multi-user relay system over Nakagami-m fading channels. Heliyon, 6(11), e05440.

    Article  Google Scholar 

  25. Nguyen, T.-T., Nguyen, S. Q., Nguyen, P. X., & Kim, Y.-H. (2022). Evaluation of full-duplex SWIPT cooperative NOMA-based IoT relay networks over Nakagami-m fading channels. Sensors, 22(5), 1974. https://doi.org/10.3390/s22051974

    Article  Google Scholar 

  26. Vu, T.-H., Nguyen, T.-V., & Kim, S. (2022). Cooperative NOMA-enabled SWIPT IoT networks with imperfect SIC: Performance analysis and deep learning evaluation. IEEE Internet of Things Journal, 9(3), 2253–2266. https://doi.org/10.1109/JIOT.2021.3091208

    Article  Google Scholar 

  27. Nguyen, T.-T., Nguyen, V.-D., Pham, Q.-V., Lee, J.-H., & Kim, Y.-H. (2021). Resource allocation for AF relaying wireless-powered networks with nonlinear energy harvester. IEEE Communications Letters, 25(1), 229–233. https://doi.org/10.1109/LCOMM.2020.3023937

    Article  Google Scholar 

  28. Wu, W., Yin, X., Deng, P., Guo, T., & Wang, B. (2019). Transceiver design for downlink SWIPT NOMA systems with cooperative full-duplex relaying. IEEE Access, 7, 33464–33472.

    Article  Google Scholar 

  29. Bisen, S., Shaik, P., & Bhatia, V. (2021). On Performance of Energy Harvested cooperative NOMA under imperfect CSI and imperfect SIC. IEEE Transactions on Vehicular Technology, 70(9), 8993–9005. https://doi.org/10.1109/TVT.2021.3099067

    Article  Google Scholar 

  30. Nguyen, B. C., et al. (2020). Outage probability of NOMA system with wireless power transfer at source and full-duplex relay. AEU-international Journal of Electronics and Communications, 116, 152957.

    Google Scholar 

  31. Manh Hoang, T., Nguyen, B. C., Trung, T. T., & Dung, L. T. (2020). Outage and throughput analysis of power-beacon assisted nonlinear energy harvesting NOMA multi-user relay system over Nakagami-m fading channels. Heliyon., 6(11), e05440. https://doi.org/10.1016/j.heliyon.2020.e05440

    Article  Google Scholar 

  32. Nguyen, B. C., et al. (2019). Performance analysis of energy harvesting-based full-duplex decode-and-forward vehicle-to-vehicle relay networks with nonorthogonal multiple access. Wireless Communications and Mobile Computing, 2019, 1–11.

    Article  Google Scholar 

  33. Vu, T.-H., Nguyen, T.-V., & Kim, S. (2022). Cooperative NOMA-Enabled SWIPT IoT Networks With Imperfect SIC: Performance Analysis and Deep Learning Evaluation. IEEE Internet of Things Journal, 9(3), 2253–2266. https://doi.org/10.1109/JIOT.2021.3091208

    Article  Google Scholar 

  34. Nguyen, T. T., Nguyen, V. D., Pham, Q. V., Lee, J. H., & Kim, Y. H. (2020). Resource allocation for AF relaying wireless-powered networks with nonlinear energy harvester. IEEE Communications Letters, 25(1), 229–233. https://doi.org/10.1109/LCOMM.2020.3023937

    Article  Google Scholar 

  35. Parihar, A. S., Swami, P., Bhatia, V., & Ding, Z. (2021). Performance analysis of SWIPT enabled cooperative-NOMA in heterogeneous networks using carrier sensing. IEEE Transactions on Vehicular Technology, 70(10), 10646–10656. https://doi.org/10.1109/TVT.2021.3110806

    Article  Google Scholar 

  36. Singh, S. K., Agrawal, K., Singh, K., Li, C.-P., & Alouini, M.-S. (2022). NOMA enhanced UAV-assisted communication system with nonlinear energy harvesting. IEEE Open Journal of the Communications Society, 3, 936–957. https://doi.org/10.1109/OJCOMS.2022.3178147

    Article  Google Scholar 

  37. Bharadia, D., & McMilin, E., Katti, S. (2013). Full duplex radios. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM’13), Hong Kong, China, 12–16; pp. 375–386.

  38. Zhang, Z., Ma, Z., Xiao, M., Ding, Z., & Fan, P. (2017). Full-duplex device-to-device-aided cooperative non-orthogonal multiple access. IEEE Transactions on Vehicular Technology, 66, 4467–4471.

    Google Scholar 

  39. Xu, B., Xiang, Z., Ren, P., & Guo, X. (2021). Outage performance of downlink full-duplex network-coded cooperative NOMA. IEEE Wireless Communications Letters, 10, 26–29.

    Article  Google Scholar 

  40. Ma, L., Li, E., & Yang, Q. (2021). On the performance of full-duplex cooperative NOMA with non-linear EH. IEEE Access, 9, 145968–145976. https://doi.org/10.1109/ACCESS.2021.3124090

    Article  Google Scholar 

  41. Aswathi, V., & Babu, A. V. (2021). Outage and throughput analysis of full-duplex cooperative NOMA system with energy harvesting. IEEE Transactions on Vehicular Technology, 70(11), 11648–11664. https://doi.org/10.1109/TVT.2021.3112596

    Article  Google Scholar 

  42. Zhang, Z., Ma, Z., Xiao, M., Ding, Z., & Fan, P. (2017). Full-duplex device-to-device-aided cooperative non orthogonal multiple access. IEEE Transactions on Vehicular Technology, 66(5), 4467–4471. https://doi.org/10.1109/TVT.2016.2600102

    Article  Google Scholar 

  43. Nguyen, Tien-Tung., Nguyen, Sang Quang, Nguyen, PhuX., & Kim, Yong-Hwa. (2022). Evaluation of full-duplex SWIPT cooperative NOMA-based IoT relay networks over Nakagami-m fading channels. Sensors, 22(5), 1974. https://doi.org/10.3390/s22051974

    Article  Google Scholar 

  44. Suraweera, H. A., Smith, P. J., & Shafi, M. (2010). Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge. IEEE Transactions on Vehicular Technology, 59(4), 1811–1822.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Baranwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of Proposition 2

Substituting (8), (9), (13), and (14) in to (19), we get

$$\begin{aligned}{} & {} \begin{aligned} P_{out}^{U2}&= 1-Pr\{|h_{sr}|^2>b_2,|h_{sr}|^2>b_1,|h_{sr}|^2|h_{rd_{2}}|^2>b_5 \\&,|h_{sr}|^2|h_{rd_{2}}|^2>b_6\} \end{aligned} \end{aligned}$$
(36)
$$\begin{aligned}{} & {} P_{out}^{U2}=1-Pr\{|h_{sr}|^2>b_7,|h_{sr}|^2|h_{rd_{2}}|^2>b_8\} \end{aligned}$$
(37)

where \(b_7=max.(b_2,b_1)\), \(b_8=max.(b_5,b_6)\),

\(b_6=\frac{\gamma _{th_{3}}d_{sr}^md_{rd_{2}}^mN_o}{\nu P_{s}(a_3'-a_2'\gamma _{th_{3}})}\), \(b_5=\frac{\gamma _{th_{2}}d_{sr}^md_{rd_{2}}^mN_o}{\nu P_{s}a_2'}\).

Let \(Z=XY\), \(X=|h_{sr}|^2\), \(Y=|h_{rd_{2}}|^2\) Using properties of Random process and PDF of random variable (see equation no. 2), the above equation furthger reduces to

$$\begin{aligned} P_{out}^{U2}=1-\int _{b_7}^{\infty } \frac{1}{\lambda _{sr}} e^{-(\frac{x}{\lambda _{sr}}+\frac{b_8}{x\lambda _{rd_{2}}})}dx \end{aligned}$$
(38)

Proof of Proposition 3

Substituting (8), and (13) in to (22), we get

$$\begin{aligned} P_{out}^{U3}=1-Pr\{(|h_{sr}|^2>b_1,|h_{sr}|^2|h_{rd_{2}}|^2>b_6\} \end{aligned}$$
(39)

Following the procedure as shown in Proposition 2, we get the expression of \(P_{out}^{U3}\) in terms of Bessel function.

Appendix B

Proof of Proposition 4

With the instantaneous rate given in (25), The ergodic rate can be written as:-

$$\begin{aligned} R_{U1}=(1-\theta )E\{log_2 (1+\gamma _{r,x_1})\} \end{aligned}$$
(40)

Let \(U=\gamma _{r,x_1}\) The CDF of U is expressed as

$$\begin{aligned} F_U(u)=1-e^{-c_1u} \end{aligned}$$

where, \(c_1=\frac{(I_s+N_o)d_{sr}^m}{a_1P_s\lambda _{sr}}\) Therefore, Ergodic rate is written as

$$\begin{aligned} R_{U1}=(1-\theta )E\{log_2 (1+U\} \end{aligned}$$
(41)
$$\begin{aligned} R_{U1}=\frac{(1-\theta )}{\ln 2}\int _{0}^{\infty }\frac{1-F_{U}(u)}{1+u} \end{aligned}$$
(42)

Substituting \(F_U(u)\) in (42), and using relation: \(\int _{0}^{\infty }e^\frac{-ax}{1+x}=-e^{-c_1}Ei(-c_1)\) Ergodic rates of \(U_1\) is obtained as

$$\begin{aligned} R_{U1}=\frac{(\theta -1)}{\ln 2}e^{c_{1}}Ei(-c_1) \end{aligned}$$
(43)

PROOF OF PROPOSITION 5: With the instantaneous rate of U2 given by (27), The ergodic rate can be expressed as:-

$$\begin{aligned} R_{U2}=(1-\theta )E\{log_2 \left( 1+\min (\gamma _{r,x_2},\gamma _{d,x_2})\right) \} \end{aligned}$$
(44)

Let \(X=\gamma _{r,x_2}\), \(Y=\gamma _{d,x_2}\), and \(Z=\min (\gamma _{r,x_2}, \gamma _{d,x_2})\)

$$\begin{aligned} R_{U2}=(1-\theta )E\{log_2 \left( 1+Z\right) \} \end{aligned}$$
(45)

To find the ergodic rates, first we need to find the CDF of X, Y, and Z. The CDF of X and Y are derived as

$$\begin{aligned} F_X(x)=1-e^{\frac{-m_2x}{(a_2-a_1x)}} \end{aligned}$$
(46)

The CDF \(F_X(x)\) is obtained under the condition \((a_2-a_1x)>0\), so \(x<\left( \frac{a_2}{a_1}\right)\)

$$\begin{aligned} F_Y(y)=1-2\sqrt{m_4y}K_1({2\sqrt{m_4y}}) \end{aligned}$$
(47)

Thus the CDF of Z can be written as

$$\begin{aligned} F_Z(z)=Pr\left[ Z<z\right] \end{aligned}$$
(48)
$$\begin{aligned} F_Z(z)=1-\left[ 1-F_X(z)\right] \left[ 1-F_Y(z)\right] \end{aligned}$$
(49)

where \(m_2\)=\(\frac{d_{sr}^md_{rd_2}^mN_o}{P_{s}\lambda _{sr}}\), and \(m_4\)=\(\frac{d_{sr}^md_{rd_2}^mN_o}{a_2'\nu P_{s}\lambda _{sr}\lambda _{rd_{2}}}\)

Therefore the ergodic capacity of U2 is written as

$$\begin{aligned} R_{U2}=(1-\theta )E\{log_2 (1+Z)\} \end{aligned}$$
(50)
$$\begin{aligned} R_{U2}=\frac{(1-\theta )}{\ln 2}\int _{0}^{k}\frac{1-F_Z(z)}{1+z}dz \end{aligned}$$
(51)

where \(t=\frac{a_2}{a_1}\) The above integration is difficult to solve. Therefore using Gaussian-Chebyshev approximation, we derive the ergodic rate. Gaussian Chebyshev approximation is given by:-

$$\begin{aligned} \int _{-1}^{1}\frac{f(x)}{\sqrt{(1-x^2)}}dx=\sum _{i=1}^{N_1} w_if(x_{i}) \end{aligned}$$
(52)

where, \(w_i\)=\(\frac{pi}{N_1}\) are weights, \(x_i\)=\(cos\left[ \frac{(2i-1)\pi }{2N_1}\right]\), and \(N_1\) is a parameter to achieve an accuracy-complexity trade-off. So, the Ergodic rate is given by:-

$$\begin{aligned} R_{U2}=\frac{(1-\theta )m_5}{\ln 2}\sum _{i=1}^{N_1}w_ig(x_{i}) \end{aligned}$$
(53)

where \(g(x)=\frac{2\sqrt{m_4m_5(1-x^2)(1+x)}}{1+m_5(1+x)}K_1(2\sqrt{m_4m_5(1+x)})e^\frac{m_2(1+x)}{2(x-1)}\)

Proof of Proposition 6

With the instantaneous rate given by (31), the ergodic rate of U3 is expressed as:-

$$\begin{aligned} R_{U3}=(1-\theta )E\{log_2 \left( 1+\min (\gamma _{r,x_3},\gamma _{d,x_3})\right) \} \end{aligned}$$
(54)

Let \(U=\gamma _{r,x_3}\), \(V=\gamma _{d,x_3}\), and \(W=\min (\gamma _{r,x_3},\gamma _{d,x_3})\)

$$\begin{aligned} R_{U3}=(1-\theta )E\{log_2 \left( 1+W\right) \} \end{aligned}$$
(55)

Similar to the solution obtained in finding ergodic capacity of U2, we follow the same procedure. CDF of U, V, can be obtained as

$$\begin{aligned} F_U(u)=1-e^{\frac{-l_2x}{(a_3-a_2x-a_1x)}} \end{aligned}$$
(56)

The CDF of U must satisfy \((a_3-a_2x-a_1x)>0\) such that \(x<\frac{a_3}{a_2+a_1}\)

$$\begin{aligned} F_V(v)=1-2\sqrt{l_4y}K_1({2\sqrt{l_4y}}) \end{aligned}$$
(57)

\(l_4=\frac{N_od_{sr}^md_{rd_{2}^m}}{(a_3'\nu P_s-a_2'\nu P_sy)\lambda _{sr}\lambda _{rd_3}}\) Therefore, CDF of W is expressed as

$$\begin{aligned} F_W(w)=Pr\left[ W<w\right] \end{aligned}$$
$$\begin{aligned} F_W(w)=1-\left[ 1-F_U(w)\right] \left[ 1-F_V(w)\right] \end{aligned}$$
(58)

Therefore the ergodic rate of U3 is written as

$$\begin{aligned}{} & {} R_{U3}=(1-\theta )E\{log_2 (1+W)\} \end{aligned}$$
(59)
$$\begin{aligned}{} & {} R_{U3}=\frac{(1-\theta )}{\ln 2}\int _{0}^{m}\frac{1-F_W(w)}{1+w}dw \end{aligned}$$
(60)

where \(m=\min (u,v)\), \(u=\frac{a_3}{a_2+a_1}\), and \(v=\frac{a_3'}{a_2'}\).

Using Gaussian-Chebyshev approximation, we obtain the ergodic rate of U3 as

$$\begin{aligned} R_{U3}=\frac{(1-\theta )l_7}{\ln 2}\sum _{i=1}^{N_2}w_ih(x_{i}) \end{aligned}$$
(61)

where \(h(x)=2\sqrt{ \frac{l_6l_7(1+x)(1-x^2)}{a_3'-a_2'l_7(1+x)}}K_1(2\sqrt{\frac{l_6l_7(1+x)(1-x^2)}{a_3'-a_2'l_7(1+x)}})\times e^(\frac{-l_2l_7(1+x)}{a_3-(a_2+a_1)l_7(1+x)})\) \(l_7=\frac{a_3}{2(a_2+a_1)}\) \(N_2\) is a parameter to achieve an accuracy-complexity trade-off.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranwal, A., Sharma, S., Roy, S.D. et al. On performance of a full duplex SWIPT enabled cooperative NOMA network. Wireless Netw (2023). https://doi.org/10.1007/s11276-023-03608-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-023-03608-x

Keywords

Navigation