Skip to main content
Log in

Performance analysis of cooperative NOMA with optimized power allocation using deep learning approach

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Cooperative Non-Orthogonal Multiple Access (Cooperative NOMA) is a communication technique used in wireless networks to enhance spectral efficiency and overall system performance. Non-Orthogonal Multiple Access is a multiple access scheme that allows multiple users to share the same time-frequency resources by allocating different power levels to each user. This paper presents a comprehensive performance validation of NOMA empowered by optimal relay selection and deep learning-based power allocation techniques. To achieve effective data transmission to far users, the optimal relay selection process employs the Maximum Energy Harvested Relay (MEHR) selection approach, which intelligently selects relays based on their energy harvesting capabilities. Furthermore, an enhanced Deep Convolutional Optimized Neural Network (DCOnN) is utilized for optimal power allocation among users in a cooperative NOMA system. To efficiently optimize the power allocation process with the DCOnN model, the Grey Wolf (GW) optimization is utilized to fine-tune the network weights. The presented approach significantly increases the energy efficiency in cooperative NOMA networks. The combination of optimal relay selection and deep learning-based power allocation enhances outage probability performance, ensuring better coverage and communication reliability while reducing the bit error rate for users in challenging channel conditions. Finally, the integration of optimal relay selection using DCOnN with GW optimization and cooperative cognitive NOMA provides a powerful framework to achieve superior communication performance in wireless networks. The proposed scheme achieves higher performance in terms of energy efficiency (519.257 Bits/J/Hz) and CPU time (0.012 seconds). The experimental results proved that the proposed performance is enhanced than the different existing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article.

References

  1. Vaezi, M., Schober, R., Ding, Z., & Poor, H. V. (2019). Non-orthogonal multiple access: Common myths and critical questions. IEEE Wireless Communications, 26(5), 174–180.

    Article  Google Scholar 

  2. Mounir, M., & El_Mashade, M. B., and Mohamed Aboshosha, A. (2021). On the selection of power allocation strategy in power domain non-orthogonal multiple access (PD-NOMA) for 6G and beyond. Transactions on Emerging Telecommunications Technologies, 33(6), e4289.

  3. Gamal, S., Rihan, M., Hussin, S., Zaghloul, A., & Salem, A. A. (2021). Multiple access in cognitive radio networks: from orthogonal and non-orthogonal to rate-splitting. IEEE Access, 9, 95569–95584.

    Article  Google Scholar 

  4. Deolia, V.K. (2021). Code Domain Non-Orthogonal Multiple Access Schemes for 5G and Beyond Communication Networks: A Review. Journal of Engineering Research.

  5. Ghazi, H. S. (2021). Non-orthogonal multiple access with successive interference cancellation and its applications. Poznan University of Technology.

    Google Scholar 

  6. Rehman, B. U., Babar, M. I., Ahmad, A. W., Alhumyani, H., Azim, G. A., Saeed, R. A., & Khalek, S. A. (2021). Joint power control and user grouping for uplink power domain non-orthogonal multiple access. International Journal of Distributed Sensor Networks, 17(12), 15501477211057444.

    Article  Google Scholar 

  7. Noura, H. N., Melki, R., & Chehab, A. (2021). Efficient data confidentiality scheme for 5g wireless NOMA communications. Journal of Information Security and Applications, 58, 102781.

    Article  Google Scholar 

  8. Akbar, A., Jangsher, S., & Bhatti, F. A. (2021). NOMA and 5G emerging technologies: A survey on issues and solution techniques. Computer Networks, 190, 107950.

    Article  Google Scholar 

  9. Rajab, H., Benkhelifa, F., & Cinkler, T. (2021). Analysis of power allocation for NOMA-Based D2D communications using GADIA. Information, 12(12), 510.

    Article  Google Scholar 

  10. Parekh, N., & Joshi, R. (2022). Non orthogonal multiple access techniques for next generation wireless networks: A review. In Proceedings of the international e-conference on intelligent systems and signal processing (pp. 171–188). Springer.

  11. Ismail, S., D’andreagiovanni, F., Lakhlef, H., & Imine, Y. (2020). Recent advances on 5G resource allocation problem using PD-NOMA. In: 2020 international symposium on networks, computers and communications (ISNCC) (pp. 1–7). IEEE.

  12. Al-Abbasi, Z. Q., Rabie, K. M., & So, D. K. (2021). EE optimization for downlink NOMA-based multi-tier CRANs. IEEE Transactions on Vehicular Technology, 70(6), 5880–5891.

    Article  Google Scholar 

  13. Yuan, Y., Xu, Y., Yang, Z., Xu, P., & Ding, Z. (2019). Energy efficiency optimization in full-duplex user-aided cooperative SWIPT NOMA systems. IEEE Transactions on Communications, 67(8), 5753–5767.

    Article  Google Scholar 

  14. Song, Z., Wang, X., Liu, Y., & Zhang, Z. (2019). Joint spectrum resource allocation in NOMA-based cognitive radio network with SWIPT. IEEE Access, 7, 89594–89603.

    Article  Google Scholar 

  15. Jameel, F., Khan, W. U., Chang, Z., Ristaniemi, T., & Liu, J. (2019). Secrecy analysis and learning-based optimization of cooperative NOMA SWIPT systems. In: 2019 IEEE international conference on communications workshops (ICC Workshops) (pp. 1–6). IEEE.

  16. Lu, W., Si, P., Huang, G., Han, H., Qian, L., Zhao, N., & Gong, Y. (2020). SWIPT cooperative spectrum sharing for 6G-enabled cognitive IoT network. IEEE Internet of Things Journal, 8(20), 15070–15080.

    Article  Google Scholar 

  17. Iswarya, N., & Jayashree, L. S. (2021). A survey on successive interference cancellation schemes in non-orthogonal multiple access for future radio access. Wireless Personal Communications, 120(2), 1–22.

    Article  Google Scholar 

  18. Qin, Z., Yue, X., Liu, Y., Ding, Z., & Nallanathan, A. (2018). User association and resource allocation in unified NOMA enabled heterogeneous ultra-dense networks. IEEE Communications Magazine, 56(6), 86–92.

    Article  Google Scholar 

  19. Ghous, M., Hassan, A. K., Abbas, Z. H., & Abbas, G. (2021). Modeling and analysis of self-interference impaired two-user cooperative MIMO-NOMA system. Physical Communication, 48, 101441.

    Article  Google Scholar 

  20. Zhang, H., Zhang, H., Long, K., & Karagiannidis, G. K. (2020). Deep learning based radio resource management in NOMA networks: User association, subchannel and power allocation. IEEE Transactions on Network Science and Engineering, 7(4), 2406–2415.

    Article  MathSciNet  Google Scholar 

  21. Wang, L., Wu, Y., Zhang, H., Choi, S., & Leung, V. C. M. (2020). Resource allocation for NOMA based space-terrestrial satellite networks. IEEE Transactions on Wireless Communications, 20(2), 1065–1075.

    Article  Google Scholar 

  22. Lei, H., Yang, Z., Park, K. H., Ansari, I. S., Guo, Y., Pan, G., & Alouini, M. S. (2019). Secrecy outage analysis for cooperative NOMA systems with relay selection schemes. IEEE Transactions on Communications, 67(9), 6282–6298.

    Article  Google Scholar 

  23. Baidas, M. W., Alsusa, E., & Hamdi, K. A. (2019). Joint relay selection and energy-efficient power allocation strategies in energy-harvesting cooperative NOMA networks. Transactions on Emerging Telecommunications Technologies, 30(7), e3593.

    Article  Google Scholar 

  24. Lee, J., & So, J. (2020). Reinforcement learning-based joint user pairing and power allocation in MIMO-NOMA systems. Sensors, 20(24), 7094.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. Garcia, C. E., Camana, M. R., & Koo, I. (2021). Relay selection and power allocation for secrecy sum rate maximization in underlying cognitive radio with cooperative relaying NOMA. Neurocomputing, 452, 756–767.

    Article  Google Scholar 

  26. Garcia, C. E., Tuan, P. V., Camana, M. R., & Koo, I. (2020). Optimized power allocation for a cooperative NOMA system with SWIPT and an energy-harvesting user. International Journal of Electronics, 107(10), 1704–1733.

    Article  ADS  Google Scholar 

  27. Huang, C., Chen, G., Gong, Y., Xu, P., Han, Z., & Chambers, J. A. (2021). Buffer-aided relay selection for cooperative hybrid NOMA/OMA networks with asynchronous deep reinforcement learning. IEEE Journal on Selected Areas in Communications, 39(8), 2514–2525.

    Article  Google Scholar 

  28. Vu, T. H., Nguyen, T. V., & Kim, S. (2021). Cooperative NOMA-enabled SWIPT IoT networks with imperfect SIC: Performance analysis and deep learning evaluation. IEEE Internet of Things Journal, 9(3), 2253–2266.

    Article  Google Scholar 

  29. Malladi, R., Beuria, M. K., Shankar, R., & Singh, S. S. (2022). Investigation of the fifth generation non-orthogonal multiple access technique for defense applications using deep learning. The Journal of Defense Modeling and Simulation, 19(4), 829–838.

    Article  Google Scholar 

  30. Beuria, M. K., Shankar, R., & Singh, S. S. (2022). Analysis of the energy harvesting non-orthogonal multiple access technique for defense applications over Rayleigh fading channel conditions. The Journal of Defense Modeling and Simulation, 19(4), 821–828.

    Article  Google Scholar 

  31. Ali, Z., Sidhu, G. A. S., Gao, F., Jiang, J., & Wang, X. (2021). Deep learning based power optimizing for NOMA based relay aided D2D transmissions. IEEE Transactions on Cognitive Communications and Networking, 7(3), 917–928.

    Article  Google Scholar 

  32. Reshma, K., & Babu, A. V. (2020). Cooperative NOMA system with incremental relaying and energy harvesting: Performance analysis and optimization. Transactions on Emerging Telecommunications Technologies, 31(9), e4075.

    Article  Google Scholar 

  33. AV, A. V. (2021). Performance analysis of power splitting SWIPT-enabled full duplex cooperative NOMA system with direct link. IET Communications, 15, 1028–1044.

    Article  Google Scholar 

  34. Diamanti, M., Fragkos, G., Tsiropoulou, E. E., & Papavassiliou, S. (2020). Unified user association and contract-theoretic resource orchestration in noma heterogeneous wireless networks. IEEE Open Journal of the Communications Society, 1, 1485–1502.

    Article  Google Scholar 

  35. Li, G., Liu, H., Huang, G., Li, X., Raj, B., & Kara, F. (2021). Effective capacity analysis of reconfigurable intelligent surfaces aided NOMA network. EURASIP Journal on Wireless Communications and Networking, 2021(1), 1–16.

    Article  Google Scholar 

  36. Khazali, A., Tarchi, D., Shayesteh, M. G., Kalbkhani, H., & Bozorgchenani, A. (2021). Energy efficient uplink transmission in cooperative mmWave NOMA networks with wireless power transfer. IEEE Transactions on Vehicular Technology, 71(1), 391–405.

    Article  Google Scholar 

  37. Mohajer, A., Daliri, M. S., Mirzaei, A., Ziaeddini, A., Nabipour, M., & Bavaghar, M. (2022). Heterogeneous computational resource allocation for NOMA: Toward green mobile edge-computing systems. IEEE Transactions on Services Computing, 16(2), 1225–1238.

    Article  Google Scholar 

  38. Dong, S., Zhan, J., Hu, W., Mohajer, A., Bavaghar, M., & Mirzaei, A. (2023). Energy-efficient hierarchical resource allocation in uplink-downlink decoupled NOMA HetNets. IEEE Transactions on Network and Service Management.

  39. Mohajer, A., Sorouri, F., Mirzaei, A., Ziaeddini, A., Rad, K. J., & Bavaghar, M. (2022). Energy-aware hierarchical resource management and backhaul traffic optimization in heterogeneous cellular networks. IEEE Systems Journal, 16(4), 5188–5199.

    Article  ADS  Google Scholar 

Download references

Funding

No funding is provided for the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Manoj Kumar Beuria.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

All the authors involved have agreed to participate in this submitted article.

Consent to publish

All the authors involved in this manuscript give full consent for publication of this submitted article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beuria, M.K., Singh, S.S. Performance analysis of cooperative NOMA with optimized power allocation using deep learning approach. Wireless Netw 30, 819–834 (2024). https://doi.org/10.1007/s11276-023-03522-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03522-2

Keywords

Navigation