Skip to main content
Log in

Multi-objective fog node placement strategy based on heuristic algorithms for smart factories

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

With the rapid development of industrial IoT technology, a growing number of intelligent devices are being deployed in smart factories to digitally upgrade the manufacturing industry. The increasing number of intelligent devices brings a huge task request. Fog computing, which is an emerging distributed computing paradigm, is widely applied to process the device data generated in smart manufacturing. However, as fog nodes are resource limited and geographically widely distributed limitations, proper fog node placement strategies are critical to enhance the service performance of fog computing systems. In this paper, we study the problem of fog node placement in smart factories and divide it into two scenarios, fixed device and mobile device fog node placement, depending on the mobility of the devices. The fog node placement model and objective function are built in the two scenarios, and two improved heuristic algorithms are proposed to obtain the most optimal placement scheme. In addition, we perform simulation experiments based on existing intelligent production line prototype platforms and devices to evaluate the performance of the proposed algorithms. The IGA reduces latency by an average of \(586.7 - 1089{\text{ms}}\) over the benchmark algorithm, saving \(18.3 - 39\%\) in energy consumption. The total latency of IMOA is reduced by \(59.8 - 68.5\%\), and the maximum latency is reduced by \(48.8 - 69.2\%\). The experimental results show that the proposed algorithms outperform other benchmark algorithms in terms of task response time and energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Khalil, R. A., Saeed, N., Masood, M., Fard, Y. M., Alouini, M. S., & Al-Naffouri, T. Y. (2021). Deep learning in the industrial internet of things: potentials, challenges, and emerging applications. IEEE Internet of Things Journal, 8(14), 11016–11040.

    Article  Google Scholar 

  2. Latif, S., Driss, M., Boulila, W., Huma, Z. E., Jamal, S. S., Idrees, Z., & Ahmad, J. (2021). Deep learning for the industrial internet of things (IIoT): A comprehensive survey of techniques, implementation frameworks, potential applications, and future directions. Sensors, 21(22), 7518.

    Article  Google Scholar 

  3. Pivoto, D. G. S., de Almeida, L. F. F., da Rosa Righi, R., Rodrigues, J. J. P. C., Lugli, A. B., & Alberti, A. M. (2021). Cyber-physical systems architectures for industrial internet of things applications in Industry 4.0: A literature review. Journal of Manufacturing Systems, 58, 176–192.

    Article  Google Scholar 

  4. Natesha, B. V., & Guddeti, R. M. R. (2021). Adopting elitism-based Genetic Algorithm for minimizing multi-objective problems of IoT service placement in fog computing environment. Journal of Network and Computer Applications, 178, 102972.

    Article  Google Scholar 

  5. Elazhary, H. (2019). Internet of Things (IoT), mobile cloud, cloudlet, mobile IoT, IoT cloud, fog, mobile edge, and edge emerging computing paradigms: Disambiguation and research directions. Journal of Network and Computer Applications, 128, 105–140.

    Article  Google Scholar 

  6. Angeline, C.V.N., Lavanya, R. (2019). Fog Computing and Its Role in the Internet of Things, In Advances in Computer and Electrical Engineering.

  7. Singh, J., Singh, P., & Gill, S. S. (2021). Fog computing: A taxonomy, systematic review, current trends and research challenges. Journal of Parallel and Distributed Computing, 157, 56–85.

    Article  Google Scholar 

  8. Sabireen, H., & Neelanarayanan, V. (2021). A review on fog computing: Architecture fog with IoT, algorithms and research challenges. ICT Express, 7(2), 162–176.

    Article  Google Scholar 

  9. Laghari, A.A., Jumani, A.K., Laghari, R.A. (2021) Review and state of art of fog computing, Archives of Computational Methods in Engineering, 1–13.

  10. Rezapour, R., Asghari, P., Javadi, H. H. S., & Ghanbari, S. (2021). Security in fog computing: A systematic review on issues, challenges and solutions. Computer Science Review, 41, 100421.

    Article  MATH  Google Scholar 

  11. Wang, J., Li, D., & Hu, Y. (2021). Fog nodes deployment based on space-time characteristics in smart factory. IEEE Transactions on Industrial Informatics, 17(5), 3534–3543.

    Article  Google Scholar 

  12. Mahmud, R., Toosi, A. N., Ramamohanarao, K., & Buyya, R. (2020). Context-aware placement of industry 4.0 applications in fog computing environments. IEEE Transactions on Industrial Informatics, 16(11), 7004–7013.

    Article  Google Scholar 

  13. Kalsoom, T., Ramzan, N., Ahmed, S., & Ur-Rehman, M. (2020). Advances in Sensor Technologies in the Era of Smart Factory and Industry 40. Sensors, 20(23), 6783.

    Article  Google Scholar 

  14. Mantravadi, S., Møller, C., Li, C., & Schnyder, R. (2022). Design choices for next-generation IIoT-connected MES/MOM: An empirical study on smart factories. Robotics and Computer-Integrated Manufacturing, 73, 102225.

    Article  Google Scholar 

  15. Shi, Z., Xie, Y. P., Xue, W., Chen, Y., Fu, L. L., & Xu, X. B. (2020). Smart factory in industry 4.0. Systems Research and Behavioral Science, 37(4), 607–617.

    Article  Google Scholar 

  16. Nakimuli, W., Garcia-Reinoso, J., Sierra-Garcia, J. E., Serrano, P., & Fernández, I. Q. (2021). Deployment and evaluation of an industry 4.0 use case over 5G. IEEE Communications Magazine, 59(7), 14–20.

    Article  Google Scholar 

  17. Wan, J., Li, X., Dai, H. N., Kusiak, A., Martínez-García, M., & Li, D. (2021). Artificial-intelligence-driven customized manufacturing factory: key technologies, applications, and challenges. Proceedings of the IEEE, 109(4), 377–398.

    Article  Google Scholar 

  18. Salaht, F. A., Desprez, F., & Lebre, A. (2020). An overview of service placement problem in fog and edge computing. ACM Computing Surveys, 53(3), 1–35.

    Article  Google Scholar 

  19. Cassel, G. A. S., Rodrigues, V. F., da Rosa Righi, R., Bez, M. R., Nepomuceno, A. C., & André da Costa, C. (2022). Serverless computing for internet of things: A systematic literature review. Future Generation Computer Systems, 128, 299–316.

    Article  Google Scholar 

  20. Huang, T., Lin, W., Xiong, C., Pan, R., & Huang, J. (2020). An ant colony optimization-based multiobjective service replicas placement strategy for fog computing. IEEE Transactions on Cybernetics, 51, 5595–5608.

    Article  Google Scholar 

  21. Lera, I., Guerrero, C., & Juiz, C. (2019). Availability-aware service placement policy in fog computing based on graph partitions. IEEE Internet of Things Journal, 6(2), 3641–3651.

    Article  Google Scholar 

  22. Laroui, M., Nour, B., Moungla, H., Cherif, M. A., Afifi, H., & Guizani, M. (2021). Edge and fog computing for IoT: A survey on current research activities & future directions. Computer Communications, 180, 210–231.

    Article  Google Scholar 

  23. Bermbach, D., Bader, J., Hasenburg, J., Pfandzelter, T., & Thamsen, L. (2021). AuctionWhisk: using an auction-inspired approach for function placement in serverless fog platforms. Software: Practice and Experience, 52, 1143–1169.

    Google Scholar 

  24. Santoyo-González, A., & Cervelló-Pastor, C. (2020). Network-aware placement optimization for edge computing infrastructure under 5G. IEEE Access, 8, 56015–56028.

    Article  Google Scholar 

  25. Caviglione, L., & Gaggero, M. (2021). Multiobjective placement for secure and dependable smart industrial environments. IEEE Transactions on Industrial Informatics, 17(2), 1298–1306.

    Article  Google Scholar 

  26. Zeng, D., Gu, L., & Yao, H. (2020). Towards energy efficient service composition in green energy powered cyber-physical fog systems. Future Generation Computer Systems, 105, 757–765.

    Article  Google Scholar 

  27. Alharbi, H. A., Elgorashi, T. E. H., & Elmirghani, J. M. H. (2020). Energy efficient virtual machines placement over cloud-fog network architecture. IEEE Access, 8, 94697–94718.

    Article  Google Scholar 

  28. Gavaber, M. D., & Rajabzadeh, A. (2021). MFP: An approach to delay and energy-efficient module placement in IoT applications based on multi-fog. Journal of Ambient Intelligence and Humanized Computing, 12(7), 7965–7981.

    Article  Google Scholar 

  29. Taghizadeh, J., Ghobaei-Arani, M., & Shahidinejad, A. (2022). A metaheuristic-based data replica placement approach for data-intensive IoT applications in the fog computing environment. Software-Practice & Experience, 52(2), 482–505.

    Article  Google Scholar 

  30. Maia, A. M., Ghamri-Doudane, Y., Vieira, D., & Franklin de Castro, M. (2021). An improved multi-objective genetic algorithm with heuristic initialization for service placement and load distribution in edge computing. Computer Networks, 194, 108146.

    Article  Google Scholar 

  31. Taghizadeh, J., Ghobaei-Arani, M., & Shahidinejad, A. (2021). An efficient data replica placement mechanism using biogeography-based optimization technique in the fog computing environment. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-021-03495-0

    Article  Google Scholar 

  32. Tavousi, F., Azizi, S., & Ghaderzadeh, A. (2021). A fuzzy approach for optimal placement of IoT applications in fog-cloud computing. Cluster Computing. https://doi.org/10.1007/s10586-021-03406-0

    Article  Google Scholar 

  33. Nezami, Z., Zamanifar, K., Djemame, K., & Pournaras, E. (2021). Decentralized edge-to-cloud load balancing: Service placement for the internet of things. IEEE Access, 9, 64983–65000.

    Article  Google Scholar 

  34. Ketu, S., & Mishra, P. K. (2021). Cloud, fog and mist computing in IoT: An indication of emerging opportunities. IETE Technical Review, 39, 713–24.

    Article  Google Scholar 

  35. Wang, S., Zhao, Y., Xu, J., Yuan, J., & Hsu, C.-H. (2019). Edge server placement in mobile edge computing. Journal of Parallel and Distributed Computing, 127, 160–168.

    Article  Google Scholar 

  36. Lin, C.-C., Deng, D.-J., Suwatcharachaitiwong, S., & Li, Y.-S. (2020). Dynamic weighted fog computing device placement using a bat-inspired algorithm with dynamic local search selection. Mobile Networks and Applications, 25(5), 1805–1815.

    Article  Google Scholar 

  37. Shen, B., Xu, X., Qi, L., Zhang, X., & Srivastava, G. (2021). Dynamic server placement in edge computing toward Internet of Vehicles. Computer Communications, 178, 114–123.

    Article  Google Scholar 

  38. Cao, B., Fan, S., Zhao, J., Tian, S., Zheng, Z., Yan, Y., & Yang, P. (2021). Large-scale many-objective deployment optimization of edge servers. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3841–3849.

    Article  Google Scholar 

  39. Katoch, S., Chauhan, S. S., & Kumar, V. (2020). A review on genetic algorithm: past, present, and future. Multimedia Tools and Applications, 80, 8091–8126.

    Article  Google Scholar 

  40. Lee, K. S., & Geem, Z. W. (2004). A new structural optimization method based on the harmony search algorithm. Computers & Structures, 82(9–10), 781–798.

    Article  Google Scholar 

  41. Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering, 194(36–38), 3902–3933.

    Article  MATH  Google Scholar 

  42. Zervoudakis, K., & Tsafarakis, S. (2020). A mayfly optimization algorithm. Computers & Industrial Engineering, 145, 106559.

    Article  Google Scholar 

  43. Bonyadi, M. R. (2019). A theoretical guideline for designing an effective adaptive particle swarm. IEEE Transactions on Evolutionary Computation, 24(1), 57–68.

    Article  Google Scholar 

  44. Fister, I., Fister, I., Yang, X. S., & Brest, J. (2013). A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation, 13, 34–46.

    Article  Google Scholar 

  45. Liu, Z., Jiang, P., Wang, J., & Zhang, L. (2021). Ensemble forecasting system for short-term wind speed forecasting based on optimal sub-model selection and multi-objective version of mayfly optimization algorithm. Expert Systems with Applications, 177, 114974.

    Article  Google Scholar 

  46. Majumdar, K., Roy, P. K., & Banerjee, S. (2021). Implementation of multi-objective chaotic mayfly optimisation for hydro-thermal- solar-wind scheduling based on available transfer capability problem. International Transactions on Electrical Energy Systems, 31(11), e13029.

    Article  Google Scholar 

  47. Liu, L., Sun, S. Z., Yu, H., Yue, X., & Zhang, D. (2016). A modified fuzzy C-means (FCM) clustering algorithm and its application on carbonate fluid identification. Journal of Applied Geophysics, 129, 28–35.

    Article  Google Scholar 

  48. Zhang, N., Zhao, Z., Bao, X., Qian, J., & Wu, B. (2020). Gravitational search algorithm based on improved tent chaos. Control Decis., 35(4), 893–900.

    Google Scholar 

  49. Shi, Y., Eberhart, R.C. (1999) Empirical study of particle swarm optimization. pp. 1945–1950 vol. 3.

  50. Happ, D., Bayhan, S., & Handziski, V. (2021). Joint placement of IoT analytics operators and pub/sub message brokers in fog-centric IoT platforms. Future Generation Computer Systems, 119, 7–19.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key R&D Program of China under Grant NO. 2017YFE0125300.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenyu Yin or Guangjie Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Yin, Z., Han, G. et al. Multi-objective fog node placement strategy based on heuristic algorithms for smart factories. Wireless Netw (2023). https://doi.org/10.1007/s11276-023-03262-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-023-03262-3

Keywords

Navigation