Skip to main content
Log in

Crown shaped edge multiband antenna design for 5G and X-Band applications

  • OriginalPaper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Nowadays we are experiencing the fifth-generation (5G) technology with new frequency bands to achieve high broadband speed, minimum latency and more developed end user devices. Due to the different frequency ranges for different applications at 5G bands the antennas should support multiband operation in a compact structure. This paper proposes a new multiband microstrip patch antenna design operating at mid band 5G frequencies and in the X band. The structure of the antenna includes simply loading the top radiating edge with rhombic shaped stubs and slots. This configuration yields the antenna to have resonances at multiple frequencies based on the fact that the stubs and slots affect capacitive and inductive impedances on the lower and higher operating frequencies of the antenna. The unique design enables the antenna to have reasonably high gains at four different bands of 6.76 dBi, 6.47 dBi, 7.76 dBi and 5.51 dBi at 3.34 GHz, 4.61 GHz, 6.01 and 8.02 GHz, respectively. Also, the simulated antenna has been manufactured and measured. The measurement results are in good agreement with the simulation results. The proposed design can be used with many other frequency bands and dielectric materials as well to achieve multiband operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Lee, J., Tejedor, E., Ranta-aho, K., Wang, H., Lee, K. T., Semaan, E., Mohyeldin, E., Song, J., Berglijung, C., & Jung, S. (2018). Spectrum for 5G: global status, Challenges, and Enabling Technologies. IEEE Communication Magazine, 56, 12–18. https://doi.org/10.1109/MCOM.2018.1700818.

    Article  Google Scholar 

  2. Kaur, N., Sharma, S., & Kaur, J. (2019). Performance comparison of Evolutionary Algorithms in the design of a hand-pump shape Microstrip Antenna for 5G applications. Elektronika ir Elektrotechnica, 25(5), 31–36. https://doi.org/10.5755/j01.eie.25.5.24353.

    Article  Google Scholar 

  3. Alieeldin, A., Huang, Y., Boyes, S. J., Stanley, M., Joseph, S. D., Hua, Q., & Lei, D. (2018). A Triple-Band Dual-Polarized indoor base station antenna for 2G, 3G, 4G and Sub-6 GHz 5G applications. Ieee Access : Practical Innovations, Open Solutions, 6, 49209–49216. https://doi.org/10.1109/ACCESS.2018.2868414.

    Article  Google Scholar 

  4. Zhang, Y., Zheng, H., Gao, B., Tang, C., Liu, R., & Wang, M. (2019). A Compact Dual-band Antenna for 5G Application. Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, Taiyuan, China. DOI: https://doi.org/10.1109/CSQRWC.2019.8799291.

  5. Ullah, M. H., Mandeep, J. S., Misran, N., Yatim, B., & Islam, M. T. (2014). Design and prototyping of a Compact 2S shaped dual Band Patch Antenna. Elektronika ir Elektrotechnika, 20(1), 92–95. https://doi.org/10.5755/j01.eee.20.1.6171.

    Article  Google Scholar 

  6. Pei, J., Wang, A., Gao, S., & Leng, W. (2011). Miniaturized Triple-Band Antenna with a defected ground plane for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 10, 298–301. https://doi.org/10.1109/LAWP.2011.2140090.

    Article  Google Scholar 

  7. Patel, R. H., Desai, A., & Upadhyaya, T. K. (2018). An Electrically Small Antenna Using Defected Ground Structure for RFID, GPS and IEEE 802.11 a/b /g /S Applications. Progress In Electromagnetics Research Letters, vol. 75, pp. 75–81, DOI:https://doi.org/10.2528/PIERL18021901.

  8. Reddy, B. R. S., & Vakula, D. (2015). Compact Zigzag-Shaped-Slit Microstrip Antenna with Circular defected Ground structure for Wireless Applications. IEEE Antennas and Wireless Propagation Letters, 14, 678–681. https://doi.org/10.1109/LAWP.2014.2376984.

    Article  Google Scholar 

  9. Liu, W., Wu, C., & Dai, Y. (2011). Design of triple-frequency Microstrip-Fed Monopole Antenna using defected Ground structure. IEEE Transactions on Antennas and Propagation, 59(7), 2457–2463. https://doi.org/10.1109/TAP.2011.2152315.

    Article  Google Scholar 

  10. Ali, T., Prasad, K. D., & Biradar, R. C. (2018). A miniaturized slotted Multiband Antenna for Wireless Applications. Journal of Computational Electronics, 17, 1056–1070. https://doi.org/10.1007/s10825-018-1183-z.

    Article  Google Scholar 

  11. Hajlaoui, E. A., & Almohaimeed, Z. M. A. (2020). New Electromagnetic Band Gap Antenna for multiple Ultrawide Band Applications. ISSS Journal of Micro and Smart Systems, 9, 109–115. https://doi.org/10.1007/s41683-020-00056-z.

    Article  Google Scholar 

  12. Rahman, M. M., Islam, M. S., Wong, H. Y., Alam, T., & Islam, M. T. (2019). Performance analysis of a defected ground-structured antenna loaded with stub-slot for 5G communication. Sensors (Basel, Switzerland), 19(11), 2634. https://doi.org/10.3390/s19112634.

    Article  Google Scholar 

  13. Sharma, M. (2020). Design and Analysis of Multiband Antenna for Wireless Communication. Wireless Personal Communications, vol. 114, pp. 1389–1402. https://doi.org/10.1007/s11277-020-07425-9.

  14. Jing, J., Pang, J., Lin, H., Qiu, Z., & Liu, C. J. (2020). A Multiband Compact Low-Profile Planar Antenna based on multiple resonant stubs. Progress In Electromagnetics Research Letters, 94, 1–7. https://doi.org/10.2528/PIERL20071104.

    Article  Google Scholar 

  15. Mondal, K., Sarkar, P. P., & Sarkar, D. C. (2019). High Gain Triple Band Microstrip Patch Antenna for WLAN, Bluetooth and 5.8 GHz/ISM Band Applications. Wireless Personal Communications, vol. 109, pp. 2121–2131. DOI: https://doi.org/10.1007/s11277-019-06671-w.

  16. Gupta, M., & Mathur, V. (2018). Multiband Multiple Elliptical Microstrip Patch Antenna with Circular Polarization. Wireless Personal Communication, vol. 102, pp. 355–368. DOI: https://doi.org/10.1007/s11277-018-5843-x.

  17. Yoon, J. (2006). Fabrication and Measurement of Modified Spiral-Patch Antenna for Use as a Triple‐Band (2.4GHz/5GHz) Antenna. Microwave and Optical Technology Letters, vol.48, pp. 1275–1279. DOI: https://doi.org/10.1002/mop.21675.

  18. Asnani, V., & Baudha, S. (2019). Triple Band Microstrip Patch Antenna useful for Wi-Fi and WiMAX. IETE Journal of Research. https://doi.org/10.1080/03772063.2019.1582365.

    Article  Google Scholar 

  19. Sahar, N. M., Islam, M. T., & Misran, N. M. (2015). A reconfigurable Multiband Antenna for RFID and GPS applications. Elektronika ir Elektrotechnika, 21(6), 44–50. https://doi.org/10.5755/j01.eee.21.6.13760.

    Article  Google Scholar 

  20. Abdulraheem, Y. I., George, A. O., Abdulkareem, S. A., Husham, J. M., Ramzy, A. A., Raed, A. A., & James, M. N. (2017). Design of Frequency Reconfigurable Multiband Compact Antenna Using Two PIN Diodes for WLAN/WiMAX Applications. IET Microwaves, Antennas & Propagation, vol. 11, no. 8, pp. 1098–1105. doi: https://doi.org/10.1049/iet-map.2016.0814.

  21. Saroj, A. K., & Ansari, J. A. (2020). A reconfigurable multiband rhombic shaped microstrip antenna for wireless smart applications. International Journal of RF and Microwave Computer Aided Engineering, 30, https://doi.org/10.1002/mmce.22378.

  22. Singh, P. P., Goswami, P. K., Sharma, S. K., & Goswami, G. (2020). Frequency Reconfigurable Multiband Antenna for IoT Applications in WLAN, Wi-Max, and C-Band. Progress In Electromagnetics Research C, vol. 102, pp. 149–162. DOI:https://doi.org/10.2528/PIERC20022503.

  23. Ali, T., Khaleeq, M. M., & Biradar, R. C. (2018). A multiband reconfigurable slot antenna for Wireless Applications. International Journal of Electronics and Communications, 84, 273–280. https://doi.org/10.1016/j.aeue.2017.11.033.

    Article  Google Scholar 

  24. Carver, K., & Mink, J. (1981). Microstrip Antenna Technology. IEEE Transactions on Antennas and Propagation, 29(1), 2–24. https://doi.org/10.1109/TAP.1981.1142523.

    Article  Google Scholar 

  25. Computer Simulation Technology Microwave Studio (CST MWS), Ver (2016). Framingham, MA, USA, 2016.

  26. Deshmukh, A. A., Ankit, G., Harsh, C., Rahil, S., Sneha, S., & Ray, K. P. (2012). Analysis of Stub Loaded Circular Microstrip Antennas. International Conference on Advances in Computing and Communications, Cochin, Kerala. pp. 282–285, DOI: https://doi.org/10.1109/ICACC.2012.65.

  27. RT/ Duroid 6002 Datasheet. Retrieved April 02, 2022, from RT/duroid 6002 Laminates Data Sheet (rogerscorp.com)

  28. Matin, M. A., & Sayeed, A. I. (2010). A design rule for Inset-Fed rectangular microstrip Patch Antenna. WSEAS Transactions on Communications, 9(1), 63–72.

    Google Scholar 

  29. Derneryd, A. (1978). A theoretical investigation of the rectangular microstrip antenna element. IEEE Transactions on Antennas and Propagation, 26(4), 532–535. https://doi.org/10.1109/TAP.1978.1141890.

    Article  Google Scholar 

  30. Garg, R., Bhartia, P., Bahl, I. J., & Ittipiboon, A. (2001). Microstrip Antenna Design Handbook. Artech House: Norwood.

  31. Awaleh, A. A., Dahlan, S. H., & Jenu, M. Z. M. (2014). Equivalent Electrical Lumped Component Modeling of E-shaped Patch Flat Lens Antenna Unit Cell. IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE).

Download references

Acknowledgements

The authors would like to thank Abdullah Gul University Electrical-Electronics Engineering Department for providing antenna fabrication, test and measurement facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baris Gurcan Hakanoglu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakanoglu, B.G., Kilic, V.T., Altindis, F. et al. Crown shaped edge multiband antenna design for 5G and X-Band applications. Wireless Netw 29, 3255–3270 (2023). https://doi.org/10.1007/s11276-023-03250-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03250-7

Index Terms

Navigation