Skip to main content

Advertisement

Log in

Radiation pattern reconfigurable cubical antenna array for 2.45 GHz wireless communication applications

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper a single-fed four-faced multidirectional compact antenna is introduced for 2.45 GHz indoor wireless applications. Firstly, a slotted patch antenna is designed to operate at 2.45 GHz and its equivalent circuit model is synthesized, and then 2 × 1 patch antenna arrays are modelled and placed over the four faces of a cube structure and the final cube antenna is called as 4 × 2 × 1 antenna array. Meanwhile, a 50Ω fed line is positioned at the bottom of this cube with a power dividing network for the feeding line. For this purpose, a T-junction power divider network is designed at the bottom layer of the cube structure. Besides, the RF switches are located at each arm of four faces to transfer microwave energy selectively to each individual antenna element. Therefore, the reflection and radiation characteristics of proposed compact antenna are analysed to improve the performance under various switching conditions by the numerical analysis. The possibility of controlling selective radiation in a given direction is confirmed. The main advantage of the proposed design is to have capability of radiation control while preserving the reflection coefficient stability by RF switches. Finally, the proposed compact antenna is fabricated using a conventional printed circuit technology and the radiation performance is tested by the experimental measurements conducted. It is observed that measurement results are in a good agreement with the numerical computation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

No new data were created or analysed in this study. Data sharing does not apply to this article.

References

  1. Mailloux, R. J. (2017). Phased array antenna handbook. Artech house.

  2. Yang, G., Li, J., Wei, D., & Xu, R. (2017). Study on wide-angle scanning linear phased array antenna. IEEE Transactions on Antennas and Propagation, 66(1), 450–455. https://doi.org/10.1109/TAP.2017.2761999

    Article  Google Scholar 

  3. Mabrouk, I. B., Nedil, M., Denidni, T. A., & Sebak, A. R. (2019). A Novel Design of Radiation Pattern-Reconfigurable Antenna System for Millimeter-Wave 5G Applications. IEEE Transactions on Antennas and Propagation, 68(4), 2585–2592. https://doi.org/10.1109/TAP.2019.2952607

    Article  Google Scholar 

  4. Kang, W., & Kim, K. (2011). A radiation pattern-reconfigurable antenna for wireless communications. In 2011 IEEE International Symposium on Antennas and Propagation (APSURSI) (pp. 1545–1548). IEEE. https://doi.org/10.1109/APS.2011.5996592

  5. Cai, X. T., Wang, A. G., Ning, M. A., & Wen, L. E. N. G. (2012). Novel radiation pattern reconfigurable antenna with six beam choices. The Journal of China Universities of Posts and Telecommunications, 19(2), 123–128. https://doi.org/10.1016/S1005-8885(11)60256-2

    Article  Google Scholar 

  6. Li, P. K., Shao, Z. H., Wang, Q., & Cheng, Y. J. (2014). Frequency-and pattern-reconfigurable antenna for multistandard wireless applications. IEEE antennas and wireless propagation letters, 14, 333–336. https://doi.org/10.1109/LAWP.2014.2359196

    Article  Google Scholar 

  7. Yang, Y., Simorangkir, R. B., Zhu, X., Esselle, K., & Xue, Q. (2017). A novel boresight and conical pattern reconfigurable antenna with the diversity of 360° polarization scanning. IEEE Transactions on Antennas and Propagation, 65(11), 5747–5756. https://doi.org/10.1109/TAP.2017.2754412

    Article  MathSciNet  MATH  Google Scholar 

  8. Fang, P., Wang, K., Wolfmüller, M., & Eibert, T. F. (2018). Radiation pattern reconfigurable antenna for MIMO systems with antenna tuning switches. In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (pp. 503–504). IEEE. https://doi.org/10.1109/APUSNCURSINRSM.2018.8608356

  9. Zhang, T., Yao, S. Y., & Wang, Y. (2014). Design of radiation-pattern-reconfigurable antenna with four beams. IEEE Antennas and wireless propagation letters, 14, 183–186. https://doi.org/10.1109/LAWP.2014.2360098

    Article  Google Scholar 

  10. Hossain, M. A., Bahceci, I., & Cetiner, B. A. (2017). Parasitic layer-based radiation pattern reconfigurable antenna for 5G communications. IEEE Transactions on Antennas and Propagation, 65(12), 6444–6452. https://doi.org/10.1109/TAP.2017.2757962

    Article  Google Scholar 

  11. Lin, W., Wong, H., & Ziolkowski, R. W. (2017). Wideband pattern-reconfigurable antenna with switchable broadside and conical beams. IEEE Antennas and wireless propagation letters, 16, 2638–2641. https://doi.org/10.1109/LAWP.2017.2738101

    Article  Google Scholar 

  12. Zhu, Z., Wang, P., You, S., & Gao, P. (2018). A flexible frequency and pattern reconfigurable antenna for wireless systems. Progress in Electromagnetics Research Letters, 76, 63–70. https://doi.org/10.1155/2018/3678018

    Article  Google Scholar 

  13. Chen, S. L., Qin, P. Y., Lin, W., & Guo, Y. J. (2018). Pattern-reconfigurable antenna with five switchable beams in elevation plane. IEEE Antennas and Wireless Propagation Letters, 17(3), 454–457. https://doi.org/10.1109/LAWP.2018.2794990

    Article  Google Scholar 

  14. Selvam, Y. P., Kanagasabai, M., Alsath, M. G. N., Velan, S., Kingsly, S., Subbaraj, S., & Karuppiah, M. (2017). A low-profile frequency-and pattern-reconfigurable antenna. IEEE Antennas and Wireless Propagation Letters, 16, 3047–3050. https://doi.org/10.1109/LAWP.2017.2759960

    Article  Google Scholar 

  15. Shi, W., Li, Y., Zhao, L., & Liu, X. (2019). Controllable sparse antenna array for adaptive beamforming. IEEE Access, 7, 6412–6423. https://doi.org/10.1109/ACCESS.2018.2889877

    Article  Google Scholar 

  16. Lin, T., & Zhu, Y. (2019). Beamforming design for large-scale antenna arrays using deep learning. IEEE Wireless Communications Letters, 9(1), 103–107. https://doi.org/10.1109/LWC.2019.2943466

    Article  Google Scholar 

  17. Sohrabi, F., & Yu, W. (2016). Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE Journal of Selected Topics in Signal Processing, 10(3), 501–513. https://doi.org/10.1109/JSTSP.2016.2520912

    Article  Google Scholar 

  18. Keh, J. F., Chou, M., Zhang, Z. C., An, Q. X., & Liao, W. J. (2019). A beamforming-network-based four-squint-beam array antenna for ceiling-mount access point. IEEE Antennas and Wireless Propagation Letters, 18(4), 707–711. https://doi.org/10.1109/LAWP.2019.2901510

    Article  Google Scholar 

  19. Lian, J. W., Ban, Y. L., Yang, Q. L., Fu, B., Yu, Z. F., & Sun, L. K. (2018). Planar millimeter-wave 2-D beam-scanning multibeam array antenna fed by compact SIW beam-forming network. IEEE Transactions on Antennas and Propagation, 66(3), 1299–1310. https://doi.org/10.1109/TAP.2018.2797873

    Article  Google Scholar 

  20. Patriotis, M., Ayoub, F. N., Christodoulou, C. G., & Chryssomallis, M. T. (2020). Reconfigurable Four-Sector Cube Antenna for IoT Devices. In 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting (pp. 1815–1816). IEEE. https://doi.org/10.1109/IEEECONF35879.2020.9330151

  21. Shamsinejad, S., Khalid, N., Monavar, F. M., Shamsadini, S., Mirzavand, R., Moradi, G., & Mousavi, P. (2019). Pattern reconfigurable cubic slot antenna. IEEE Access, 7, 64401–64410. https://doi.org/10.1109/ACCESS.2019.2917145

    Article  Google Scholar 

  22. Shah, S. I. H., & Lim, S. (2017). A dual band frequency reconfigurable origami magic cube antenna for wireless sensor network applications. Sensors, 17(11), 2675. https://doi.org/10.3390/s17112675

    Article  Google Scholar 

  23. Gahgouh, S., Saidi, I., & Gharsallah, A. (2022). Study and Analysis of a novel compact cubic antenna design for WSN applications. Przeglad Elektrotechniczny. https://doi.org/10.15199/48.2022.06.29

    Article  Google Scholar 

  24. Alam, T., Almutairi, A. F., Samsuzzaman, M., Cho, M., & Islam, M. T. (2021). Metamaterial array based meander line planar antenna for cube satellite communication. Scientific reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-93537-6

    Article  Google Scholar 

  25. Wang, Y., Tsao, H. Y., Sauber, N., Weikle, R. M., Lichtenberger, A. W., & Barker, N. S. (2021). Micro-machined 3D cube antenna for X-Band communication ICs. In 2021 IEEE 21st Annual Wireless and Microwave Technology Conference (WAMICON) (pp. 1–3). IEEE. https://doi.org/10.1109/WAMICON47156.2021.9443599

  26. Abulgasem, S., Tubbal, F., Raad, R., Theoharis, P. I., Lu, S., & Iranmanesh, S. (2021). Antenna designs for cubesats: A review. IEEE Access, 9, 45289–45324. https://doi.org/10.1109/ACCESS.2021.3066632

    Article  Google Scholar 

  27. Patriotis, M., Ayoub, F. N., & Christodoulou, C. G. (2021). Pattern reconfigurable antenna for cognitive radio. In 2021 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW) (pp. 1–5). IEEE. https://doi.org/10.1109/CCAAW50069.2021.9527296

  28. Xu, Y., Kim, Y., Tentzeris, M. M., & Lim, S. (2019). Bi-directional loop antenna array using magic cube origami. Sensors, 19(18), 3911. https://doi.org/10.3390/s19183911

    Article  Google Scholar 

  29. Fauzan, A., Khayam, U., Kozako, M., & Hikita, M. (2018). Design and fabrication of 3-D cube UHF antenna for partial discharge detection. In 2018 Condition Monitoring and Diagnosis (CMD) (pp. 1–6). IEEE. https://doi.org/10.1109/CMD.2018.8535817

  30. Bakytbekov, A., Nguyen, T. Q., Huynh, C., Salama, K. N., & Shamim, A. (2018). Fully printed 3D cube-shaped multiband fractal rectenna for ambient RF energy harvesting. Nano Energy, 53, 587–595. https://doi.org/10.1016/j.nanoen.2018.09.022

    Article  Google Scholar 

  31. California Eastern Laboratories, “L, S-band Medium Power SPDT Switch” CG2179M2 datasheet, https://www.cel.com/documents/datasheets/CG2179M2.pdf

Download references

Acknowledgements

This study was supported by Scientific Research Projects department of Iskenderun Technical University (grant number of 2021LTP13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Ozkan Alkurt.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkurt, F.O., Unal, E., Palandoken, M. et al. Radiation pattern reconfigurable cubical antenna array for 2.45 GHz wireless communication applications. Wireless Netw 29, 235–246 (2023). https://doi.org/10.1007/s11276-022-03116-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03116-4

Keywords

Navigation