Skip to main content
Log in

Secondary spectrum allocation framework via concurrent auctions for 5G and beyond networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Due to the dramatic increase of spectrum demand, efficient usage of the limited spectrum resources has become a crucial issue for the next-generation wireless networks. Auction-based spectrum trading, utilization and pricing have many promising features and have proven to be a fair and consistent way of secondary spectrum trading and management. In this paper, we present a mathematical approach to the future spectrum market where multiple buyers (secondary network operator) compete to gain spectrum resources through a number of auctions from multiple sellers (primary network operator, PNO). Through static and dynamic auctions, the secondary network operators borrow underutilized licensed spectrum resources from primary operators either through predefined contracts or through instantaneous contracts. Our main focus is on the optimal choice of the secondary operator, contiguous spectrum resource to maintain the quality and utilization history based fair allocation of the spectrum resources through auctions controlled by the third party spectrum regulators (SR), which has not been addressed previously. We first develop a matching problem to identify the most suitable auctions for secondary operators. A price-based optimal number of auctions and a utility-based ranking of the optimal auctions to be bid by the secondary operators are proposed, where the secondary operator maximizes the net utility surplus (NUS). The win or lose, pricing and allocation of spectrum resources are determined by a proposed Vickery-type mechanism. Finally, we provide simulation results to evaluate the performance of the proposed auction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

There is no data involved in this study. Results are based on simulated data.

References

  1. 3GPP: 3GPP release 15: NR carrier aggregation for intra-band and inter-band. Tech. rep., 3rd Generation Partnership Project (3GPP) (2019). http:// www.3gpp.org/ftp//Specs/archive/37_series/37.865-01-01/37865-01-01-f30.zip

  2. Abozariba, R., Asaduzzaman, M., & Patwary, M. (2017). Radio resource sharing framework for cooperative multioperator networks with dynamic overflow modeling. IEEE Transactions on Vehicular Technology, 66(3), 2433–2447.

    Article  Google Scholar 

  3. Abozariba, R., Asaduzzaman, M., & Patwary, M. N. (2018). Optimal auctions in oligopoly spectrum market with concealed cost. In 2018 IEEE 88th vehicular technology conference (VTC-Fall), (pp. 1–6). IEEE.

  4. Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., & Tsafrir, D. (2013). Deconstructing Amazon EC2 spot instance pricing. ACM Transactions on Economics and Computation, 1(3), 16.

    Article  Google Scholar 

  5. Akhtar, T., Tselios, C., & Politis, I. (2021). Radio resource management: Approaches and implementations from 4G to 5G and beyond. Wireless Networks, 27(1), 693–734.

    Article  Google Scholar 

  6. Alsarhan, A., Quttoum, A., & Bsoul, M. (2015). Dynamic auction for revenue maximization in spectrum market. Wireless Personal Communications, 83(2), 1405–1423.

    Article  Google Scholar 

  7. Asaduzzaman, M., Abozariba, R., & Patwary, M. (2018). Dynamic spectrum sharing optimization and post-optimization analysis with multiple operators in cellular networks. IEEE Transactions on Wireless Communications, 17(3), 1589–1603.

    Article  Google Scholar 

  8. Barberà, S., Hammond, P., & Seidl, C. (2004). Handbook of utility theory: Volume 2 Extensions. Springer.

  9. Borjigin, W., Ota, K., & Dong, M. (2018). In broker we trust: A double-auction approach for resource allocation in nfv markets. IEEE Transactions on Network and Service Management, 15(4), 1322–1333.

    Article  Google Scholar 

  10. Buddhikot, M. M., Kennedy, I., Mullany, F., & Viswanathan, H. (2009). Ultra-broadband femtocells via opportunistic reuse of multi-operator and multi-service spectrum. Bell Labs Technical Journal, 13(4), 129–143.

    Article  Google Scholar 

  11. Chandra, A., Sammour, M., & Wang, J. (2018). Dynamic resource allocation, scheduling and signaling for variable data rate service in LTE. US Patent App. 15/678,934.

  12. Chen, X., Xing, L., Qiu, T., & Li, Z. (2017). An auction-based spectrum leasing mechanism for mobile macro-femtocell networks of IoT. Sensors, 17(2), 380.

    Article  Google Scholar 

  13. Chen, Y., Ma, Z., Wang, Q., Huang, J., Tian, X., & Zhang, Q. (2019). Privacy-preserving spectrum auction design: Challenges, solutions, and research directions. IEEE Wireless Communications, 26(5), 142–150.

    Article  Google Scholar 

  14. Chen, Y., Xiong, Y., Wang, Q., Yin, X., & Li, B. (2017). Stable matching for spectrum market with guaranteed minimum requirement. In Proceedings of the 18th ACM international symposium on mobile Ad hoc networking and computing, pp. 1–10.

  15. Chun, S. H., & La, R. J. (2013). Secondary spectrum trading: Auction-based framework for spectrum allocation and profit sharing. IEEE/ACM Transactions on Networking, 21(1), 176–189.

    Article  Google Scholar 

  16. Crémer, J., Spiegel, Y., & Zheng, C. Z. (2009). Auctions with costly information acquisition. Economic Theory, 38(1), 41–72.

    Article  MathSciNet  MATH  Google Scholar 

  17. David, K., & Berndt, H. (2018). 6G vision and requirements: Is there any need for beyond 5G? IEEE Vehicular Technology Magazine, 13(3), 72–80.

    Article  Google Scholar 

  18. Day, R. W., & Raghavan, S. (2007). Fair payments for efficient allocations in public sector combinatorial auctions. Management Science, 53(9), 1389–1406.

    Article  MATH  Google Scholar 

  19. Fanzeres, B., Ahmed, S., & Street, A. (2019). Robust strategic bidding in auction-based markets. European Journal of Operational Research, 272(3), 1158–1172.

    Article  MathSciNet  MATH  Google Scholar 

  20. FCC: Report of the spectrum efficiency group. Tech. rep., FCC Spectrum Policy Task Force, USA (2002).

  21. Feng, X., Chen, Y., Zhang, J., Zhang, Q., & Li, B. (2012). Tahes: A truthful double auction mechanism for heterogeneous spectrums. IEEE Transactions on Wireless Communications, 11(11), 4038–4047.

    Article  Google Scholar 

  22. Fox, J. T. (2017). Specifying a structural matching game of trading networks with transferable utility. American Economic Review, 107(5), 256–60.

    Article  Google Scholar 

  23. Fragiadakis, D., Iwasaki, A., Troyan, P., Ueda, S., & Yokoo, M. (2016). Strategyproof matching with minimum quotas. ACM Transactions on Economics and Computation (TEAC), 4(1), 1–40.

    Article  MathSciNet  Google Scholar 

  24. Gale, D., & Shapley, L. S. (1962). College admissions and the stability of marriage. The American Mathematical Monthly, 69(1), 9–15.

    Article  MathSciNet  MATH  Google Scholar 

  25. Gao, L., Huang, J., Chen, Y. J., & Shou, B. (2013). An integrated contract and auction design for secondary spectrum trading. IEEE Journal on Selected Areas in Communications, 31(3), 581–592.

    Article  Google Scholar 

  26. Gao, L., Shou, B., Chen, Y. J., & Huang, J. (2016). Combining spot and futures markets: A hybrid market approach to dynamic spectrum access. Operations Research, 64(4), 794–821.

    Article  MathSciNet  MATH  Google Scholar 

  27. Gu, Y., Zhang, Y., Pan, M., & Han, Z. (2014). Cheating in matching of device to device pairs in cellular networks. In 2014 IEEE global communications conference, pp. 4910–4915. IEEE.

  28. Hassan, M. R., Karmakar, G. C., Kamruzzaman, J., & Srinivasan, B. (2017). Exclusive use spectrum access trading models in cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 19(4), 2192–2231.

    Article  Google Scholar 

  29. Huang, H., Li, X. Y., Sun, Ye., Xu, H., & Huang, L. (2014). Pps: Privacy-preserving strategyproof social-efficient spectrum auction mechanisms. IEEE Transactions on Parallel and Distributed Systems, 26(5), 1393–1404.

    Article  Google Scholar 

  30. Hyder, C. S., Jeitschko, T. D., & Xiao, L. (2017). Bid and time truthful online auctions in dynamic spectrum markets. IEEE Transactions on Cognitive Communications and Networking, 3(1), 82–96.

    Article  Google Scholar 

  31. (ITU), I.T.U.: IMT traffic estimates for the years 2020 to 2030. Report ITU-R M. 2370–0, ITU-R Radiocommunication Sector of ITU (2015).

  32. Jayaweera, S. K., Bkassiny, M., & Avery, K. A. (2011). Asymmetric cooperative communications based spectrum leasing via auctions in cognitive radio networks. IEEE Transactions on Wireless Communications, 10(8), 2716–2724.

    Article  Google Scholar 

  33. Kim, S. (2013). A repeated Bayesian auction game for cognitive radio spectrum sharing scheme. Computer Communications, 36(8), 939–946.

    Article  Google Scholar 

  34. Kuo, W. H., & Liao, W. (2007). Utility-based resource allocation in wireless networks. IEEE Transactions on Wireless Communications, 6(10), 3600–3606.

    Article  Google Scholar 

  35. LE: Economic impacts of increased flexibility and liberalisation in european spectrum management. Tech. rep., Report for a group of European communications sector companies, London Economics, London (2008).

  36. Li, S., Huang, J., & Cheng, B. (2020). A price-incentive resource auction mechanism balancing the interests between users and cloud service provider. IEEE Transactions on Network and Service Management, 18(2), 2030–2045.

    Article  Google Scholar 

  37. Li, Y., Liao, C., Wang, Y., & Wang, C. (2015). Energy-efficient optimal relay selection in cooperative cellular networks based on double auction. IEEE Transactions on Wireless Communications, 14(8), 4093–4104.

    Article  Google Scholar 

  38. Liu, Z., & Li, C. (2017). On spectrum allocation in cognitive radio networks: A double auction-based methodology. Wireless Networks, 23(2), 453–466.

    Article  Google Scholar 

  39. Mazoochi, M., Pourmina, M. A., & Bakhshi, H. (2015). A truthful double auction mechanism for hybrid spectrums. Wireless Personal Communications, 80(3), 1011–1026.

    Article  Google Scholar 

  40. Nawaz, S. J., Sharma, S. K., Patwary, M. N., & Asaduzzaman, M. (2021). Next-generation consumer electronics for 6G wireless era. IEEE Access.

  41. Nawaz, S. J., Sharma, S. K., Wyne, S., Patwary, M. N., & Asaduzzaman, M. (2019). Quantum machine learning for 6G communication networks: State-of-the-art and vision for the future. IEEE Access, 7, 46317–46350.

    Article  Google Scholar 

  42. Niyato, D., & Hossain, E. (2008). Spectrum trading in cognitive radio networks: A market-equilibrium-based approach. IEEE Wireless Communications, 15(6), 71–80.

    Article  Google Scholar 

  43. OfCom: Application of spectrum liberalisation and trading to the mobile sector. Tech. rep., Office of Communications, UK (2007).

  44. Patwary, M. N., Junaid Nawaz, S., Rahman, M. A., Sharma, S. K., Rashid, M. M., & Barnes, S. J. (2020). The potential short- and long-term disruptions and transformative impacts of 5G and beyond wireless networks: Lessons learnt from the development of a 5G testbed environment. IEEE Access, 8, 11352–11379.

    Article  Google Scholar 

  45. Roth, A. E. (2008). Deferred acceptance algorithms: History, theory, practice, and open questions. international Journal of game Theory, 36(3), 537–569.

    Article  MathSciNet  MATH  Google Scholar 

  46. Saad, W., Han, Z., Zheng, R., Debbah, M., & Poor, H.V. (2014). A college admissions game for uplink user association in wireless small cell networks. In IEEE INFOCOM 2014-IEEE conference on computer communications, pp. 1096–1104. IEEE.

  47. Sharma, S. K., Bogale, T. E., Chatzinotas, S., Ottersten, B., Le, L. B., & Wang, X. (2015). Cognitive radio techniques under practical imperfections: A survey. IEEE Communications Surveys and Tutorials, 17(4), 1858–1884.

    Article  Google Scholar 

  48. Sharma, S. K., Bogale, T. E., Le, L. B., Chatzinotas, S., Wang, X., & Ottersten, B. (2018). Dynamic spectrum sharing in 5G wireless networks with full-duplex technology: Recent advances and research challenges. IEEE Communications Surveys and Tutorials, 20(1), 674–707.

    Article  Google Scholar 

  49. Tariq, F., Khandaker, M. R. A., Wong, K. K., Imran, M., Bennis, M., & Debbah, M. (2019). A speculative study on 6G. arXiv preprint arXiv:1902.06700v1

  50. Technical Specification Group Services and Systems Aspects: System Architecture for the 5G System; Stage 2, Releases 15. Tech. Rep. document 3GPP TS 23.501, V15.2.0, 3GPP (2018).

  51. Teng, F., & Magoules, F. (2010). Resource pricing and equilibrium allocation policy in cloud computing. In 2010 IEEE 10th international conference on computer and information technology (CIT), pp. 195–202. IEEE.

  52. Tsitsiklis, J. N., & Xu, Y. (2014). Efficiency loss in a cournot oligopoly with convex market demand. Journal of Mathematical Economics, 53, 46–58.

    Article  MathSciNet  MATH  Google Scholar 

  53. Vives, X. (1990). Nash equilibrium with strategic complementarities. Journal of Mathematical Economics, 19(3), 305–321.

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang, J., Long, Y., Wang, J., Errapotu, S. M., Li, H., Pan, M., & Han, Z. (2018). D-frost: Distributed frequency reuse-based opportunistic spectrum trading via matching with evolving preferences. IEEE Transactions on Wireless Communications, 17(6), 3794–3806.

    Article  Google Scholar 

  55. Yi, C., Cai, J., & Zhang, G. (2016). Spectrum auction for differential secondary wireless service provisioning with time-dependent valuation information. IEEE Transactions on Wireless Communications, 16(1), 206–220.

    Article  Google Scholar 

  56. Yoon, H., Hwang, J., & Weiss, M. B. (2012). An analytic research on secondary-spectrum trading mechanisms based on technical and market changes. Computer Networks, 56(1), 3–19.

    Article  Google Scholar 

  57. Zhan, S. C., Chang, S. C., Luh, P. B., & Lieu, H. H. (2014). Truthful auction mechanism design for short-interval secondary spectrum access market. IEEE Transactions on Wireless Communications, 13(3), 1471–1481.

    Article  Google Scholar 

  58. Zhang, Y., Song, L., Pan, M., Dawy, Z., & Han, Z. (2017). Non-cash auction for spectrum trading in cognitive radio networks: Contract theoretical model with joint adverse selection and moral hazard. IEEE Journal on Selected Areas in Communications, 35(3), 643–653.

    Article  Google Scholar 

  59. Zhou, X., & Zheng, H. (2009). Trust: A general framework for truthful double spectrum auctions. In IEEE INFOCOM 2009, pp. 999–1007. IEEE.

Download references

Funding

There is no funding source to declare for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Asaduzzaman.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Code availability

The codes will be available upon request from the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abozariba, R., Asaduzzaman, M., Patwary, M. et al. Secondary spectrum allocation framework via concurrent auctions for 5G and beyond networks. Wireless Netw 28, 1489–1504 (2022). https://doi.org/10.1007/s11276-022-02896-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02896-z

Keywords

Navigation