Skip to main content
Log in

Reducing download delay for cooperative caching in small cell network

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

As mobile devices become more and more popular, mobile traffic demands are increasing exponentially. To deal with such challenge, caching at small cell base stations (SBSs) is one of the most effective techniques for reducing the transmission delay of mobile applications. However, due to the limitation of the SBS storages, the improvement of reducing transmission delay is limited in small cell networks. In this paper, we propose a novel cooperative caching framework in a small cell network in which SBSs are grouped into disjoint clusters and cooperate through backhaul links to make use of SBS storages. A backhaul-based cooperative caching (BCC) scheme is introduced, and the problem for content placement is formulated to minimize the average download delay in small cell networks. Then, we show that the problem is equivalent to the maximization of a monotone submodular function subject to matroid constraints and propose a low-complexity greedy strategy with 1/2 performance guarantee. Simulation results demonstrate that the proposed scheme achieves lower download delay and better cache hit rate than other schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C.V.N. (2019) Index Global mobile data traffic forecast update, 2017–2022 white paper, Accessed on feb. 18, 2019

  2. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y. Y., & Moon, S. (2009). Ieee/Acm Transactions On Networking (Ton), 17(5), 1357.

    Article  Google Scholar 

  3. Ge, X., Tu, S., Mao, G., Wang, C. X., & Han, T. (2016). 5G ultra-dense cellular networks. IEEE Wireless Communications, 23(1), 72.

    Article  Google Scholar 

  4. Zhang, L., Xiao, M., Wu, G., & Li, S. (2016). Efficient Scheduling and Power Allocation for D2D-Assisted Wireless Caching Networks. IEEE Transactions on Communications, 64(6), 2438. https://doi.org/10.1109/TCOMM.2016.2552164.

    Article  Google Scholar 

  5. Zink, M., Suh, K., Gu, Y., & Kurose, J. (2009). Characteristics of youtube network traffic at a campus network–measurements, models, and implications. Computer networks, 53(4), 501.

    Article  Google Scholar 

  6. Krishnappa, D.K., Khemmarat, S., Gao, L., & Zink, M. (2011). In International conference on passive and active network measurement. Springer. pp. 72–80.

  7. Gong, J., Zhou, S., Zhou, Z., & Niu, Z. (2017). Policy optimization for content push via energy harvesting small cells in heterogeneous networks. IEEE Transactions on Wireless Communications, 16(2), 717.

    Article  Google Scholar 

  8. Fang, C., Yu, F.R., Huang, T., Liu, J., & Liu, Y. (2014). In IEEE conference on computer communications workshops (INFOCOM WKSHPS) (IEEE, 2014), pp. 91–96.

  9. Chen, Z., Lee, J., Quek, T. Q., & Kountouris, M. (2017). Cooperative caching and transmission design in cluster-centric small cell networks. IEEE Transactions on Wireless Communications, 16(5), 3401.

    Article  Google Scholar 

  10. Shanmugam, K., Golrezaei, N., Dimakis, A. G., Molisch, A. F., & Caire, G. (2013). Raptor codes. IEEE Transactions on Information Theory, 59(12), 8402.

    Article  MathSciNet  Google Scholar 

  11. Sheng, M., Teng, W., Chu, X., Li, J., Guo, K., & Qiu, Z. (2020). Cooperative content replacement and recommendation in small cell networks. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2020.3038849.

    Article  Google Scholar 

  12. Zhang, S., He, P., Suto, K., Yang, P., Zhao, L., & Shen, X. (2018). Cooperative edge caching in user-centric clustered mobile networks. IEEE Transactions on Mobile Computing, 17(8), 1791. https://doi.org/10.1109/TMC.2017.2780834.

    Article  Google Scholar 

  13. Dehghan, M., Jiang, B., Seetharam, A., He, T., Salonidis, T., Kurose, J., et al. (2017). On the complexity of optimal request routing and content caching in heterogeneous cache networks. IEEE/ACM Transactions on Networking, 25(3), 1635.

    Article  Google Scholar 

  14. Ozfatura, E., & Günüdz, D. (2020). Mobility-aware coded storage and delivery. IEEE Transactions on Communications, 68(6), 3275. https://doi.org/10.1109/TCOMM.2020.2981454.

    Article  Google Scholar 

  15. Tran, T. X., Le, D. V., Yue, G., & Pompili, D. (2018). Cooperative hierarchical caching and request scheduling in a cloud radio access network. IEEE Transactions on Mobile Computing, 17(12), 2729. https://doi.org/10.1109/TMC.2018.2818723.

    Article  Google Scholar 

  16. Yang, Z., Pan, C., Pan, Y., Wu, Y., Xu, W., Shikh-Bahaei, M., & Chen, M. (2018). Cache placement in two-tier hetnets with limited storage capacity: cache or buffer? IEEE Transactions on Communications, 66(11), 5415. https://doi.org/10.1109/TCOMM.2018.2846633.

    Article  Google Scholar 

  17. Wang, Y.T., Cai, Y.Z., Chen, L.A., Lin, S.J., & Tsai, M.H.(2019). In International conference on advanced information networking and applications, vol. 926 (Springer, 2019), vol. 926, pp. 725–736.

  18. Pallis, G., & Vakali, A. (2006). Insight and perspectives for content delivery networks. Communications of the ACM, 49(1), 101.

    Article  Google Scholar 

  19. Pathan, M., & Buyya, R.(2008). in Content delivery networks (Springer, 2008), pp. 33–77.

  20. Jiang, W., Feng, G., & Qin, S. (2017). Optimal cooperative content caching and delivery policy for heterogeneous cellular networks. IEEE Transactions on Mobile Computing, 16(5), 1382.

    Article  Google Scholar 

  21. Golrezaei, N., Mansourifard, P., Molisch, A. F., & Dimakis, A. G. (2014). Base-station assisted device-to-device communications for high-throughput wireless video networks. IEEE Transactions on Wireless Communications, 13(7), 3665.

    Article  Google Scholar 

  22. Kang, H. J., & Kang, C. G. (2014). Mobile device-to-device (D2D) content delivery networking: A design and optimization framework. Journal of Communications and Networks, 16(5), 568.

    Article  Google Scholar 

  23. Poularakis, K., Iosifidis, G., & Tassiulas, L. (2014). Approximation algorithms for mobile data caching in small cell networks. IEEE Transactions on Communications, 62(10), 3665.

    Article  Google Scholar 

  24. Song, J., Song, H., & Choi, W. (2015). In 2015 IEEE International conference on communications (ICC) (IEEE, 2015), pp. 1825–1830.

  25. MacKay, D. J. (2005). Fountain codes. IEE Proceedings-Communications, 152(6), 1062.

    Article  Google Scholar 

  26. Sun, Y., Chen, Z., & Liu, H., (2016). In 2016 IEEE global communications conference (GLOBECOM) (2016), pp. 1–7.

  27. Nemhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). An analysis of approximations for maximizing submodular set functional. Mathematical Programming, 14, 265.

    Article  MathSciNet  Google Scholar 

  28. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.Y., & Moon, S., (2007). In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement (ACM, 2007), pp. 1–14.

  29. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S. (1999). In IEEE Conference on computer communications (INFOCOM’99), vol. 1 (IEEE, 1999), vol. 1, pp. 126–134.

  30. Teh, Y. W., Newman, D., & Welling, M. (2007). Discovering topic structures of a temporally evolving document corpus. Advances in neural information processing systems, 55, 1353–1360.

    Google Scholar 

  31. Moltchanov, D. (2012). Distance distributions in random networks. Ad Hoc Networks, 10(6), 1146.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Center for Open Intelligent Connectivity through the Featured Areas Research Center Program within the Framework of the Higher Education Sprout Project by the Ministry of Education in Taiwan. The work of Y.-Z. Cai was sponsored in part by Google Ph.D. Fellowship and the R&D enhancement project “R&D of Network Behavior Security Analyses for IoT Devices on Advanced Edge Switch in an AIOT plus SDN Integrated Platform,” which is executed by EstiNet Technologies Inc. and partially sponsored by Hsinchu Science Park Bureau, Ministry of Science and Technology, Taiwan, R.O.C. The work of M.-H. Tsai was supported in part by the MOST under Grant 107-2221-E-006-062, 108-2221-E-006-112 and Grant 109-2221-E-006-160-, and in part by the Industrial Technology Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Hsun Tsai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Derivation for Average Wireless Transmission Rate \({\bar{R}}\)

A Derivation for Average Wireless Transmission Rate \({\bar{R}}\)

The file transmission rate can be estimated by applying the Shannon capacity formula in wireless networks as follows:

$$\begin{aligned} R_i = \frac{w}{U_i}\text {log}_2\left( 1 + \text {SINR}_i\right) , \end{aligned}$$
(22)

where w is radio bandwidth available for each SBS and, the serving SBS of user-i is \(b_{i,1}\). We assume a busy system that \(U_i\) denotes the number of users served by user-i’s \(b_{i,1}\). In other words, including user-i, \(U_i\) users have the same \(b_{i,1}\), and each user shares the bandwidth equally for file delivery.

$$\begin{aligned} \text {SINR}_i = \frac{P_t d_i^{-\alpha }}{\rho + I} \end{aligned}$$
(23)

In the signal-to-interference-plus-noise ratio, \(P_t\) is the SBS transmit power in mW. We assume that a user attaches to the nearest SBS, and \(d_i\) is the distance between user-i and \(b_{i,1}\) in meters. The pass loss exponent is presented as \(\alpha\). Let \(\rho\) denote the additive Gaussian noise and I denote the inter-cell interference both in mW. Before we obtain the average downloading delay of a request, it is necessary to define the average transmission rate \({\bar{R}}\).

$$\begin{aligned} {\bar{R}}&= \mathbb {E}\left[ R_i\right] \nonumber \\&= \mathbb {E}\left[ \frac{w}{U_i}\text {log}_2\left( 1+\text {SINR}_i\right) \right] \nonumber \\&= \frac{w\mathbb {E}\left[ \text {log}_2\left( 1+\frac{P_td_i^{-\alpha }}{\rho + I}\right) \right] }{\mathbb {E}[U_i]} \end{aligned}$$
(24)

Since the distributions of SBSs and users are modeled as PPP with density \(\lambda _b\) and \(\lambda _u\) respectively, the average number of users under the SBS is \(\mathbb {E}[U_i] = \frac{\lambda _u}{\lambda _b}\), which only depends on the density of SBSs and users and is independent of the transmission distance. To simplify the formula, we derived its lower bound:

$$\begin{aligned}&\mathbb {E}\left[ \text {log}_2\left( 1+\frac{P_td_i^{-\alpha }}{\rho + I}\right) \right] \nonumber \\&\quad \ge \mathbb {E}\left[ \text {log}_2\left( \frac{P_td_i^{-\alpha }}{\rho + I}\right) \right] \nonumber \\&\quad = \text {log}_2\left( \frac{P_t}{\rho + I}\right) - \alpha \mathbb {E}[\text {log}_2d_i]. \end{aligned}$$
(25)

According to [30], the expected value of a logarithm \(\mathbb {E}[\text {log}(x)]\) can be approximated in terms of \(\mathbb {E}[x]\):

$$\begin{aligned} \mathbb {E}[\text {log}(x)] \approx \text {log}(\mathbb {E}[x]) - \frac{\mathbb {V}[x]}{2\mathbb {E}[x]^2}. \end{aligned}$$
(26)

Thus, the approximation of \(\mathbb {E}[\text {log}(d_u)]\) is given by:

$$\begin{aligned} \mathbb {E}[\text {log}(d_i)]&\approx \text {log}(\mathbb {E}[d_i]) - \frac{\mathbb {V}[d_i]}{2\mathbb {E}[d_i]^2} \nonumber \\&= \text {log}(\mathbb {E}[d_i]) - \frac{\mathbb {E}[d_i^2]-\mathbb {E}[d_i]^2}{2\mathbb {E}[d_i]^2}. \end{aligned}$$
(27)

Now we need to solve both \(\mathbb {E}[d_i]\) and \(\mathbb {E}[d_i^2]\). As SBSs and users are both PPP distributed, we can obtain the probability of the nearest SBS found on the annulus with radius r centered at user-i is \(2\lambda _b\pi r e^{-\lambda _b\pi r^2}\) [31]. Hence:

$$\begin{aligned} \mathbb {E}[d_i]&= \int _0^\infty r \cdot 2\lambda _b\pi re^{-\lambda _b\pi r^2}\ dr \nonumber \\&= -\int _0^\infty r \cdot (-2\lambda _b\pi re^{-\lambda _b\pi r^2})\ dr \nonumber \\&\left( \text{ let } u=e^{-\lambda _b\pi r^2},\ \frac{du}{dr}=-2\lambda _b\pi re^{-\lambda _b\pi r^2} \right) \nonumber \\&= -\int _0^\infty r \frac{du}{dr}\ dr = -\left( ru \bigg |_0^\infty - \int _0^\infty u\ dr\right) \nonumber \\&= -\left( \frac{r}{e^{\lambda _b\pi r^2}}\bigg |_0^\infty - \int _0^\infty e^{-\lambda _b\pi r^2}\ dr \right) \nonumber \\&= \int _0^\infty e^{-\lambda _b\pi r^2}\ dr \nonumber \\&\left( \text {Gaussian integral: } \int _{-\infty }^\infty e^{-sx^2}\ dx={\sqrt{\frac{\pi }{s}}} \right) \nonumber \\&=\frac{1}{2\sqrt{\lambda _b}}. \end{aligned}$$
(28)

Then let’s solve \(\mathbb {E}[d_i^2]\):

$$\begin{aligned} \mathbb {E}[d_i^2]&= \int _0^\infty r^2 \cdot 2\lambda _b\pi re^{-\lambda _b\pi r^2}\ dr \end{aligned}$$
(29)

Let \(u=e^{-\lambda _b\pi r^2},\ \frac{du}{dr}=-2\lambda _b\pi re^{-\lambda _b\pi r^2}, v=r^2\), and \(\frac{dv}{dr}=2r\), then

$$\begin{aligned}&\mathbb {E}[d_i^2] = -\int _0^\infty v\ du\nonumber \\&\quad = -\left( vu \bigg |_0^\infty - \int _0^\infty u\ dv\right) \nonumber \\&\quad = -\left( \frac{r^2}{e^{\lambda _b\pi r^2}}\bigg |_0^\infty - \int _0^\infty 2re^{-\lambda _b\pi r^2}\ dr \right) \nonumber \\&\quad = \int _0^\infty 2re^{-\lambda _b\pi r^2}\ dr \nonumber \\&\quad = -\frac{1}{\lambda _b\pi } \int _0^\infty \left( -2\lambda _b\pi re^{-\lambda _b\pi r^2}\right) \ dr \nonumber \\&\quad = -\frac{1}{\lambda _b\pi } \int _0^\infty du \nonumber \\&\quad = -\frac{1}{\lambda _b\pi } \cdot \frac{1}{e^{\lambda _b\pi r^2}}\bigg |_0^\infty = -\frac{1}{\lambda _b\pi } (0-1) \nonumber \\&\quad =\frac{1}{\lambda _b\pi }. \end{aligned}$$
(30)

Substitute the results of Eq. (28) and Eq. (30) into Eq. (27):

$$\begin{aligned} \mathbb {E}[\text {log}d_i]&\approx \text {log}(\mathbb {E}[d_i]) - \frac{\mathbb {E}[d_i^2]-\mathbb {E}[d_i]^2}{2\mathbb {E}[d_i]^2} \nonumber \\&= \text {log}\left( \frac{1}{2\sqrt{\lambda _b}}\right) - \frac{4-\pi }{2\pi }. \end{aligned}$$
(31)

Finally, substitute into Eq. (24), \(\bar{R_t}\) is derived as:

$$\begin{aligned} {\bar{R}}&= \mathbb {E}[R_i] = \frac{w\mathbb {E}\left[ \text {log}_2\left( \frac{P_td_i^{-\alpha }}{\rho + I}\right) \right] }{\mathbb {E}[U_i]} \nonumber \\&\quad \approx \frac{w\left[ \text {log}_2\left( \frac{P_t}{\rho + I}\right) - \alpha \mathbb {E}[\text {log}_2d_i]\right] }{\frac{\lambda _u}{\lambda _b}} \nonumber \\&\quad = \frac{\lambda _bw}{\lambda _u}\left\{ \text {log}_2\left( \frac{P_t}{\rho + I}\right) \right. \nonumber \\&\qquad \qquad \left. - \frac{\alpha }{\text {log}2}\left[ \text {log}\left( \frac{1}{2\sqrt{\lambda _b}}\right) - \frac{4-\pi }{2\pi }\right] \right\} \nonumber \\&\quad = \frac{\lambda _bw}{\lambda _u}\left[ \text {log}_2\left( \frac{P_t\left( \frac{1}{2\sqrt{\lambda _b}}\right) ^{-\alpha }}{\rho + I}\right) + \frac{\alpha (4-\pi )}{2\pi \text {log}2}\right] . \end{aligned}$$
(32)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YT., Cai, YZ., Chen, LA. et al. Reducing download delay for cooperative caching in small cell network. Wireless Netw 28, 587–602 (2022). https://doi.org/10.1007/s11276-021-02844-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02844-3

Keywords

Navigation