Skip to main content
Log in

Wavelet transform based non-hermitian symmetry OFDM technique for indoor MIMO-VLC system with an imaging receiver

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Recently, to increase the data capacity of visible light communication (VLC) systems naturally, an ideal combination of orthogonal frequency division multiplexing (OFDM) and multiple-input multiple-output (MIMO-OFDM) technique has proven to be an efficient way. However, to ensure real-valued output for the VLC system, a Hermitian symmetry (HS) is usually levied in the OFDM technique, which reduces the data rate while increasing the computational complexity (CC) of the system. In this paper, a wavelet transform (WT) based non-HS OFDM technique (NHS-OFDM) for the MIMO-VLC system has been presented using non-imaging and imaging receivers to study the performance numerically. The state-of-the-art NHS-OFDM technique was realized by isolating real and imaginary parts of traditional RF-based OFDM signal and then transmitted by a pair of white LED luminaries. By incorporating WT with the OFDM technique, the error performance and data rate of the system are greatly improved, as WT eliminates standard usage of the cyclic prefix. Link-level performance of the recommended MIMO-VLC system was tested, considering BER, CC, and PAPR. Also, closed-form analytical BER expressions were derived and compared with the simulated results in the presence of line-of-sight links. Analytical and simulated results are analogous to each other and confirm that the proposed WT-based NHS-OFDM technique with imaging receiver achieves better BER results, with very low CC. Moreover, the WT-based NHS-OFDM technique also reduces the PAPR without employing any reduction technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kumar, A., & Gupta, M. (2018). A review on activities of fifth generation mobile communication system. Alexandria Engineering Journal, 57(2), 1125–1135.

    Article  Google Scholar 

  2. Chowdhury, M. Z., Hossan, M. T., Islam, A., & Jang, Y. M. (2018). A comparative survey of optical wireless technologies: Architectures and applications. IEEE Access, 6, 9819–9840.

    Article  Google Scholar 

  3. Shafi, M., Molisch, A. F., Smith, P. J., Haustein, T., Zhu, P., De Silva, P., Tufvesson, F., Benjebbour, A., & Wunder, G. (2017). 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE Journal on Selected Areas in Communications, 35(6), 1201–1221.

    Article  Google Scholar 

  4. Zhang, D., Zhou, Z., Mumtaz, S., Rodriguez, J., & Sato, T. (2016). One integrated energy efficiency proposal for 5G IoT communications. IEEE Internet of Things Journal, 3(6), 1346–1354.

    Article  Google Scholar 

  5. Ibhaze, A. E., Orukpe, P. E., & Edeko, F. O. (2020). High capacity data rate system: A review of visible light communication technology. Journal of Electronic Science and Technology, 18(3), 100055.

    Article  Google Scholar 

  6. Garber, L. (2011). Turning on the lights for wireless communications. Computer, 44(11), 11–14.

    Article  Google Scholar 

  7. Elgala, H., Mesleh, R., & Haas, H. (2011). Indoor optical wireless communication: potential and state-of-the-art. IEEE Communications Magazine, 49(9), 56–62.

    Article  Google Scholar 

  8. Grobe, L., Paraskevopoulos, A., Hilt, J., Schulz, D., Lassak, F., Hartlieb, F., Kottke, C., Jungnickel, V., & Langer, K. D. (2013). High-speed visible light communication systems. IEEE Communications Magazine, 51(12), 60–66.

    Article  Google Scholar 

  9. Le Minh, H., Brien, D., Faulkner, G., Zeng, L., Lee, K., Jung, D., Oh, Y., & Won, E. T. (2009). 100-Mb/s NRZ visible light communications using a postequalized white LED. IEEE Photonics Technology Letters, 21(15), 1063–1065.

    Article  Google Scholar 

  10. Afgani, M. Z., Haas, H., Elgala, H., & Knipp, D. (2006, March). Visible light communication using OFDM. In \(2^{nd}\) International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, 2006. TRIDENTCOM 2006. (pp. 6-pp). IEEE.

  11. Yeh, C. H., Chen, H. Y., Chow, C. W., & Liu, Y. L. (2015). Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC. Optics Express, 23(2), 1133–1138.

    Article  Google Scholar 

  12. Wu, L., Zhang, Z., Dang, J., & Liu, H. (2014). Adaptive modulation schemes for visible light communications. Journal of Lightwave Technology, 33(1), 117–125.

    Article  Google Scholar 

  13. Hsu, C. W., Chow, C. W., Lu, I. C., Liu, Y. L., Yeh, C. H., & Liu, Y. (2016). High speed imaging \(3 \times 3\) MIMO phosphor white-light LED based visible light communication system. IEEE Photonics Journal, 8(6), 1–6.

    Article  Google Scholar 

  14. Khalid, A., Asif, H. M., Mumtaz, S., Al Otaibi, S., & Konstantin, K. (2019). Design of MIMO-visible light communication transceiver using maximum rank distance codes. IEEE Access, 7, 89128–89140.

    Article  Google Scholar 

  15. Armstrong, J., & Lowery, A. J. (2006). Power efficient optical OFDM. Electronics letters, 42(6), 370–372.

    Article  Google Scholar 

  16. Moreolo, M. S., Muñoz, R., & Junyent, G. (2010). Novel power efficient optical OFDM based on Hartley transform for intensity-modulated direct-detection systems. Journal of Lightwave Technology, 28(5), 798–805.

    Article  Google Scholar 

  17. Barrami, F., Le Guennec, Y., Novakov, E., Duchamp, J. M., & Busson, P. (2013, October). A novel FFT/IFFT size efficient technique to generate real time optical OFDM signals compatible with IM/DD systems. In 2013 European microwave conference (pp. 1247-1250). IEEE.

  18. Adnan, A., Liu, Y., Chow, C. W., & Yeh, C. H. (2020). Demonstration of non-Hermitian symmetry (NHS) serial-complex-valued orthogonal frequency division multiplexing (SCV-OFDM) for white-light visible light communication (VLC). OSA Continuum, 3(5), 1163–1168.

    Article  Google Scholar 

  19. Khalid, A. (2020). Implementation of wavelet transform based non-Hermitian symmetry OFDM for indoor VLC system using Raspberry Pi. Journal of Optical Communications.

  20. Safari, M., & Uysal, M. (2008). Do we really need OSTBCs for free-space optical communication with direct detection? IEEE Transactions on Wireless Communications, 7(11), 4445–4448.

    Article  Google Scholar 

  21. Deng, P., & Kavehrad, M. (2017). Software defined adaptive MIMO visible light communications after an obstruction. In Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017) (pp. Th1E-5). Optical Society of America.

  22. Chen, C., Zhong, W. D., & Wu, D. (2017). Non-Hermitian symmetry orthogonal frequency division multiplexing for multiple-input multiple-output visible light communications. Journal of Optical Communications and Networking, 9(1), 36–44.

    Article  Google Scholar 

  23. Aldababseh, M., & Jamoos, A. (2014). Estimation of FBMC/OQAM fading channels using dual Kalman filters. The Scientific World Journal, 2014.

  24. Jayaprakash, A., & Reddy, G. R. (2015). Discrete ambiguity function based analysis of filter bank multicarrier systems. IETE Technical Review, 32(5), 330–346.

    Article  Google Scholar 

  25. Sarowa, S., Singh, H., Agrawal, S., & Sohi, B. S. (2018). Design of a novel hybrid intercarrier interference mitigation technique through wavelet implication in an OFDM system. Digital Communications and Networks, 4(4), 258–263.

    Article  Google Scholar 

  26. Zeng, L., Brien, D. C., Le Minh, H., Faulkner, G. E., Lee, K., Jung, D., Oh, Y., & Won, E. T. (2009). High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting. IEEE Journal on Selected Areas in Communications, 27(9), 1654–1662.

    Article  Google Scholar 

  27. Sushanth, K. S., & Chockalingam, A. (2018, June). Performance of imaging receivers using convex lens in indoor MIMO VLC systems. In 2018 IEEE \(87^{th}\) Vehicular Technology Conference (VTC Spring) (pp. 1-5). IEEE.

  28. Komine, T., & Nakagawa, M. (2004). Fundamental analysis for visible-light communication system using LED lights. IEEE Transactions on Consumer Electronics, 50(1), 100–107.

    Article  Google Scholar 

  29. Cincotti, G., Moreolo, M. S., & Neri, A. (2005). Optical wavelet signals processing and multiplexing. EURASIP Journal on Advances in Signal Processing, 2005(10), 1–10.

    Article  Google Scholar 

  30. Mallat, S. G. (2009). A theory for multiresolution signal decomposition: the wavelet representation. In Fundamental Papers in Wavelet Theory (pp. 494-513). Princeton University Press.

  31. Polikar, R., Topalis, A., Green, D., Kounios, J., & Clark, C. M. (2007). Comparative multiresolution wavelet analysis of ERP spectral bands using an ensemble of classifiers approach for early diagnosis of Alzheimer’s disease. Computers in Biology and Medicine, 37(4), 542–558.

    Article  Google Scholar 

  32. Baig, S., Asif, H. M., Umer, T., Mumtaz, S., Shafiq, M., & Choi, J. G. (2018). High data rate discrete wavelet transform-based PLC-VLC design for 5G communication systems. IEEE Access, 6, 52490–52499.

    Article  Google Scholar 

  33. Dickenson, R. J., & Ghassemlooy, Z. (2004). BER performance of 166 Mbit/s OOK diffuse indoor IR link employing wavelets and neural networks. Electronics Letters, 40(12), 753–755.

    Article  Google Scholar 

  34. Rajbhandari, S., Ghassemlooy, Z., & Angelova, M. (2009). Effective denoising and adaptive equalization of indoor optical wireless channel with artificial light using the discrete wavelet transform and artificial neural network. Journal of Lightwave technology, 27(20), 4493–4500.

    Article  Google Scholar 

  35. Vitthaladevuni, P. K., Alouini, M. S., & Kieffer, J. C. (2005). Exact BER computation for cross QAM constellations. IEEE Transactions on Wireless Communications, 4(6), 3039–3050.

    Article  Google Scholar 

  36. Baig, S., Ali, U., Asif, H. M., Khan, A. A., & Mumtaz, S. (2019). Closed-form BER expression for Fourier and wavelet transform-based pulse-shaped data in downlink NOMA. IEEE Communications Letters, 23(4), 592–595.

    Article  Google Scholar 

  37. Khan, A., & Shin, S. Y. (2018). Wavelet OFDM-based non-orthogonal multiple access downlink transceiver for future radio access. IETE Technical Review, 35(1), 17–27.

    Article  Google Scholar 

  38. Jiang, T., & Wu, Y. (2008). An overview: Peak-to-average power ratio reduction techniques for OFDM signals. IEEE Transactions on Broadcasting, 54(2), 257–268.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arslan Khalid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, A. Wavelet transform based non-hermitian symmetry OFDM technique for indoor MIMO-VLC system with an imaging receiver. Wireless Netw 27, 4649–4663 (2021). https://doi.org/10.1007/s11276-021-02762-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02762-4

Keywords

Navigation