Skip to main content
Log in

Selfishness in secure internet of things networks: 6TiSCH case study

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Performance and communication security in the Internet of Things (IoT) area draw a major concern for both academic and industrial communities. Indeed, an emerging number of IoT protocols are getting involved in the protocol stack, implying that the need for new security measures is also increasing. The Media Access Control (MAC) protocol Time Slot Channel Hopping (TSCH) has recently gained significant popularity thanks to its reliability and robustness. It quickly became the basis of IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH), a complete communication stack tailored for Industrial IoT networks. In this paper, we are interested in the lack of cooperation of some network nodes, referred to as selfishness, which often leads to network performance degradation. We introduce this concept in 6TiSCH networks for the first time, and we show how they get immunized. We first define a selfishness framework, and we integrate it into the 6top Protocol (6P). Then, we introduce a fuzzy logic-based technique enabling the detection of selfish nodes, along with an anticipatory countermeasure that tells cooperative nodes how to deal with selfish neighbors. We implement and integrate the proposed algorithms into the 6TiSCH simulator, and we conduct a thorough experimental study. Simulation results show how much the latency, Packet Delivery Ratio (PDR), and throughput are affected and how our proposal can significantly improve them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. https://pythonhosted.org/scikit-fuzzy/

  2. https://github.com/yboufenneche/SA-6TiSCH.

References

  1. IEEE Standard for low-rate wireless networks, April 2016. IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011).

  2. Municio, E., Daneels, G., Vučnić, M., Latré, S., Famaey, J., Tanaka, Yasuyuki, et al. (2019). Simulating 6tisch networks. Transactions on Emerging Telecommunications Technologies, 30(3), e3494.

    Article  Google Scholar 

  3. Cena, G., Demartini, C. G., Vakili, M. G., Scanzio, S., Valenzano, A., & Zunino, C. (2020). Evaluating and modeling IEEE 802154 TSCH resilience against Wi-Fi interference in new-generation highly-dependable wireless sensor networks. Ad Hoc Networks, 106, 102199.

    Article  Google Scholar 

  4. Vallati, C., Brienza, S., Anastasi, G., & Das, S. K. (2019). Improving network formation in 6tisch networks. IEEE Transactions on Mobile Computing, 18(1), 98–110.

    Article  Google Scholar 

  5. Mohamadi, M., & Senouci, M. R. (2019). Scheduling algorithms for IEEE 802.15.4 TSCH networks: A survey. In Demigha, O., Djamaa, B., & Amamra, A. (Eds.), Advances in computing systems and applications (pp. 4–13). Springer.

    Chapter  Google Scholar 

  6. Haxhibeqiri, J., Karaağaç, A., Moerman, I., & Hoebeke, J. (2019). Seamless roaming and guaranteed communication using a synchronized single-hop multi-gateway 802.15.4e TSCH network. Ad Hoc Networks, 86, 1–14.

    Article  Google Scholar 

  7. Daneels, G., Spinnewyn, B., Latré, S., & Famaey, J. (2018). Resf: Recurrent low-latency scheduling in IEEE 802.15.4e TSCH networks. Ad Hoc Networks, 69, 100–114.

    Article  Google Scholar 

  8. Duquennoy, S., Al Nahas, B., Landsiedel, O., & Watteyne, T. (2015). Orchestra: Robust mesh networks through autonomously scheduled TSCH. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, SenSys ’15, page 337–350, New York, NY, USA, 2015. Association for Computing Machinery.

  9. Jin, Y., Raza, U., Aijaz, A., Sooriyabandara, M., & Gormus, S. (2017). Content centric cross-layer scheduling for industrial IoT applications using 6TiSCH. IEEE Access, 6, 234–244.

    Article  Google Scholar 

  10. Kharb, Seema, & Singhrova, A. (2019). A survey on network formation and scheduling algorithms for time slotted channel hopping in industrial networks. Journal of Network and Computer Applications, 126, 59–87.

    Article  Google Scholar 

  11. Wang, Q., Vilajosana, X., & Watteyne, T. (2018). 6TiSCH Operation sublayer (6top) Protocol (6P). RFC 8480, November

  12. Yadav, H., & Pati, H. K. (2018). A survey on selfish node detection in manet. In 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN) (pp. 217–221). IEEE.

  13. Nobahary, S., Garakani, H. G., Khademzadeh, A., & Rahmani, A. M. (2019). Selfish node detection based on hierarchical game theory in IoT. EURASIP Journal on Wireless Communications and Networking, 2019(1), 1–19.

    Article  Google Scholar 

  14. Luo, J., Liu, X., & Fan, M. (2009). A trust model based on fuzzy recommendation for mobile ad-hoc networks. Computer Networks, 53(14), 2396–2407.

    Article  Google Scholar 

  15. Raza, A., Al-Karaki, J. N., & Abbas, H. (2016). Analyzing packet forwarding Schemes for selfish behavior in MANETs. Information Technology: New Generations (pp. 227–236). Springer.

    Chapter  Google Scholar 

  16. Jedari, B., Xia, F., Chen, H., Das, S. K., Tolba, A., & Zafer, A. (2019). A social-based watchdog system to detect selfish nodes in opportunistic mobile networks. Future Generation Computer Systems, 92, 777–788.

    Article  Google Scholar 

  17. Hasani, H., & Babaie, S. (2019). Selfish node detection in ad hoc networks based on fuzzy logic. Neural Computing and Applications, 31(10), 6079–6090.

    Article  Google Scholar 

  18. Das, S. K., Saha, B. J., & Chatterjee, P. S. (2014). Selfish node detection and its behavior in WSN. In Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT) (pp. 1–6). IEEE.

  19. Priya, M. D., Suganya, T., Malar, A. C. J., Dhivyaprabha, E., Prasad, P. K., & Vardhan, L. V. (2020). An efficient scheduling algorithm for sensor-based IoT networks. Inventive communication and computational technologies (pp. 1323–1331). Springer.

    Chapter  Google Scholar 

  20. Refaei, M. T., Srivastava, V., DaSilva, L., & Eltoweissy, M. (2005). A reputation-based mechanism for isolating selfish nodes in ad hoc networks. In The Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (pp. 3-11). IEEE.

  21. Komathy, K., & Narayanasamy, P. (2007). Best neighbor strategy to enforce cooperation among selfish nodes in wireless ad hoc network. Computer Communications, 30(18), 3721–3735.

    Article  Google Scholar 

  22. Hernandez-Orallo, E., Serrat, M. D., Cano, J., Calafate, C. T., & Manzoni, P. (2012). Improving selfish node detection in manets using a collaborative watchdog. IEEE Communications Letters, 16(5), 642–645.

    Article  Google Scholar 

  23. Xiao, XueFeng, Li, Y., Kui, X., & Vasilakos, A. V. (2014). Assessing the influence of selfishness on the system performance of gossip based vehicular networks. Wireless Networks, 20(7), 1795–1805.

    Article  Google Scholar 

  24. Theerthagiri, Prasannavenkatesan. (2020). Fucem: Futuristic cooperation evaluation model using Markov process for evaluating node reliability and link stability in mobile ad hoc network. Wireless Networks, 26, 4173–4188.

    Article  Google Scholar 

  25. Ullah, Z., Khan, M. S., Ahmed, I., Javaid, N., & Khan, M. I. (2016). Fuzzy-based trust model for detection of selfish nodes in manets. In 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA) (pp. 965–972). IEEE.

  26. Singh, Kuldeep, & Verma, A. K. (2018). A fuzzy-based trust model for flying ad hoc networks (FANETs). International Journal of Communication Systems, 31(6), e3517.

    Article  Google Scholar 

  27. Lei, T., Wang, S., Li, J., You, I., & Yang, Fangchun. (2016). Detecting and preventing selfish behaviour in mobile ad hoc network. The Journal of Supercomputing, 72(8), 3156–3168.

    Article  Google Scholar 

  28. Kumar, Sunil, & Dutta, K. (2018). Trust based intrusion detection technique to detect selfish nodes in mobile ad hoc networks. Wireless Personal Communications, 101(4), 2029–2052.

    Article  Google Scholar 

  29. Patel, P., & Jhaveri, R. (2017). A honeypot scheme to detect selfish vehicles in vehicular ad-hoc network. Computing and Network Sustainability (pp. 389–401). Singapore: Springer.

    Chapter  Google Scholar 

  30. Afghah, F., Shamsoshoara, A., Njilla, L., & Kamhoua, C. (2018). A reputation-based stackelberg game model to enhance secrecy rate in spectrum leasing to selfish iot devices. In IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (pp 312–317). IEEE.

  31. Cuka, M., Elmazi, D., Ikeda, M., Matsuo, K., Barolli, L., & Takizawa, M. (2020). Selection of IoT devices in opportunistic networks: A fuzzy-based approach considering IoT device’s selfish behaviour. In L. Barolli, M. Takizawa, F. Xhafa, & T. Enokido (Eds.), Advanced information networking and applications (pp. 251–264). Springer.

    Chapter  Google Scholar 

  32. Xu, L., Lin, Z., & Ye, A. (2006). Analysis and countermeasure of selfish node problem in mobile ad hoc network. In 2006 10th International Conference on Computer Supported Cooperative Work in Design. (pp. 1–4). IEEE.

  33. Seredynski, M., Bouvry, P., & Klopotek, M. A. (2007). Preventing selfish behavior in ad hoc networks. In 2007 IEEE Congress on Evolutionary Computation (pp. 3554–3560). IEEE.

  34. Tang, J., Cheng, Y., Hao, Y., & Zhou, C. (2010). Real-time detection of selfish behavior in IEEE 802.11 wireless networks. In 2010 IEEE 72nd Vehicular Technology Conference-Fall (pp. 1–5). IEEE.

  35. Yan, M., Xiao, L., Du, L., & Huang, L. (2011). On selfish behavior in wireless sensor networks: A game theoretic case study. In 2011 Third International Conference on Measuring Technology and Mechatronics Automation, 2, 752–756.

    Article  Google Scholar 

  36. Benazir, S.A.M., & Umarani, V. (2016). Detection of selfish & malicious behavior using dtn-chord monitoring in mobile networks. In 2016 International Conference on Information Communication and Embedded Systems (ICICES) (pp. 1–5). IEEE.

  37. Ghonge, M. M., Jawandhiya, P. M., & Thakare, V. M. (2017). Selfish attack detection in mobile ad hoc networks. In 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS) (pp. 1–4). IEEE.

  38. Abirami, K. Rama., & Sumithra, M. G. (2018). Preventing the impact of selfish behavior under manet using neighbor credit value based aodv routing algorithm. Sādhanā, 43(4), 60.

    Article  Google Scholar 

  39. Jhaveri, Rutvij H., & Patel, N. M. (2017). Attack-pattern discovery based enhanced trust model for secure routing in mobile ad-hoc networks. International Journal of Communication Systems, 30(7), e3148.

    Article  Google Scholar 

  40. Jhaveri, R. H., Patel, N. M., Zhong, Yubin, & Sangaiah, A. K. (2018). Sensitivity analysis of an attack-pattern discovery based trusted routing scheme for mobile ad-hoc networks in industrial iot. IEEE Access, 6, 20085–20103.

    Article  Google Scholar 

  41. Vilajosana, X., Watteyne, T., Chang, T., Vučinić, M., Duquennoy, S., & Thubert, P. (2020). Ietf 6tisch: A tutorial. IEEE Communications Surveys Tutorials, 22(1), 595–615.

    Article  Google Scholar 

  42. IPv6 over the TSCH mode of IEEE 802.15.4e (6tisch). https://datatracker.ietf.org/wg/6tisch/charter/. Accessed: 2019-06-23.

  43. Chang, T., Vučinić, M., Vilajosana, X., Duquennoy, S., & Dujovne, D. (2020). 6TiSCH Minimal scheduling function (MSF). Internet-Draft draft-ietf-6tisch-msf-12, Internet Engineering Task Force, March. Work in Progress.

  44. Almusaylim, Z. A., Alhumam, A., & Jhanjhi, N. Z. (2020). Proposing a secure RPL based internet of things routing protocol: A review. Ad Hoc Networks, 101, 102096.

    Article  Google Scholar 

  45. Palattella, M. R., Watteyne, T., Wang, Q., Muraoka, K., Accettura, N., Dujovne, D., et al. (2016). On-the-fly bandwidth reservation for 6tisch wireless industrial networks. IEEE Sensors Journal, 16(2), 550–560.

    Article  Google Scholar 

  46. Kayacan, E., & Khanesar, M. A. (2016). Fundamentals of type-1 fuzzy logic theory. In E. Kayacan & M. A. Khanesar (Eds.), Fuzzy neural networks for real time control applications: Concepts, modeling and algorithms for fast learning (pp. 13–24). Butterworth-Heinemann.

    Chapter  Google Scholar 

  47. Bai, Y., & Wang, D. (2006). Fundamentals of fuzzy logic contro–fuzzy sets, fuzzy rules and defuzzifications. In Advanced fuzzy logic technologies in industrial applications. Springer. (pp. 17-36)

  48. Wang, M., Zhu, T., Zhang, T., Zhang, J., Yu, S., & Zhou, W. (2020). Security and privacy in 6G networks: New areas and new challenges. Digital Communications and Networks, 6(3), 281–291.

    Article  Google Scholar 

  49. Porambag, P., Gür, G., Osorio, D. P. M., Liyanage, M., & Ylianttila, M. (2021). 6g security challenges and potential solutions. Preprint at https://www.researchgate.net/publication/350824205_6G_Security_Challenges_and_Potential_Solutions#fullTextFileContent

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Boufenneche.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boufenneche, Y., Zitouni, R., George, L. et al. Selfishness in secure internet of things networks: 6TiSCH case study. Wireless Netw 27, 3927–3946 (2021). https://doi.org/10.1007/s11276-021-02711-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02711-1

Keywords

Navigation