Skip to main content
Log in

A Fountain-Coding Based Cooperative Jamming Strategy for Secure Service Migration in Edge Computing

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In 5G, users can easily enjoy services by accessing the edge devices (EDs) deployed around the base stations. Generally, due to the uneven distribution and mobility of users, one ED is required to serve multiple users simultaneously, that results in the ED overload, seriously affecting the quality of experience (QoE) of the users. By responding to users’ requests, service migration realizes the cross edge device migrations, that dynamically provides services for mobile users, which effectively improves the resource utilization rate of edge servers and the QoE of users. However, during the service migrations, malicious users may deploy pseudo base stations, gateways and other devices to illegally eavesdrop or tamper with user service data, that causes user information loss or disclosure. To prevent these security issues, a fountain-coding based cooperative jamming strategy is proposed in this paper. Specifically, the fountain coding technology is introduced to construct a three-node transmission model, including an original node, a target node and a malicious node, to realize the secure data transmission process in service migration. Besides, a group of relay nodes are employed to carry out cooperative jamming, that deteriorate the illegal eavesdropping quality of malicious nodes on service data. Then secrecy rate and outage probability are utilized to evaluate the security and reliability of the whole service migration. Finally, the theoretical analysis is shown by simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abbas, N., Zhang, Y., Taherkordi, A., & Skeie, T. (2017). Mobile edge computing: A survey. IEEE Internet of Things Journal, 5(1), 450.

    Article  Google Scholar 

  2. Xu, X., Mo, R., Dai, F., Lin, W., Wan, S., & Dou, W. (2019). Dynamic resource provisioning with fault tolerance for data-intensive meteorological workflows in cloud. IEEE Transactions on Industrial Informatics, 19(9), 6172.

    Article  Google Scholar 

  3. Machen, A., Wang, S., Leung, K. K., Ko, B. J., & Salonidis, T. (2017). Live service migration in mobile edge clouds. IEEE Wireless Communications, 25(1), 140.

    Article  Google Scholar 

  4. Ha, K., Abe, Y., Eiszler, T., Chen, Z., Hu, W., Amos, B., Upadhyaya, R., Pillai, P., Satyanarayanan, M. (2017). You can teach elephants to dance: Agile VM handoff for edge computing. In Proceedings of the second ACM/IEEE symposium on edge computing, pp. 1–14

  5. Ksentini, A., Taleb, T., Chen, M. A Markov decision process-based service migration procedure for follow me cloud. In 2014 IEEE international conference on communications (ICC) (IEEE, 2014), pp. 1350–1354

  6. Taleb, T., Ksentini, A., Frangoudis, P. (2016). Follow-me cloud: When cloud services follow mobile users. IEEE Transactions on Cloud Computing

  7. Xu, X., Zhang, X., Liu, X., Jiang, J., Qi, L., & Bhuiyan, M. Z. A. (2020). Adaptive computation offloading with edge for 5G-envisioned internet of connected vehicles. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2020.2982186.

    Article  Google Scholar 

  8. Wang, S., Xu, J., Zhang, N., & Liu, Y. (2018). A survey on service migration in mobile edge computing. IEEE Access, 6, 23511.

    Article  Google Scholar 

  9. Wu, Q., Chen, X., Zhou, Z., & Chen, L. (2019). Mobile social data learning for user-centric location prediction with application in mobile edge service migration. IEEE Internet of Things Journal, 6(5), 7737.

    Article  Google Scholar 

  10. Mahfouz, A.M., Rahman, M.L., Shiva, S.G. Secure live virtual machine migration through runtime monitors. In 2017 tenth international conference on contemporary computing (IC3) (IEEE, 2017), pp. 1–5

  11. Hamad, H. M., & AlQazzaz, A. B. (2016). Secure live virtual machine migration by proposed security center. IUG Journal of Natural Studies, 24(1), 14–20.

    Google Scholar 

  12. Khan, R., McLaughlin, K., Kang, B., D. Laverty, S. Sezer, In 2020 IEEE 6th world forum on internet of things (WF-IoT) (IEEE, 2020), pp. 1–6

  13. Xu, X., Huang, Q., Yin, X., Abbasi, M., Khosravi, M. R., & Qi, L. (2020). Intelligent offloading for collaborative smart city services in edge computing. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2020.3000871.

  14. Ding, W., Ren, P., Du, Q. In 2019 11th international conference on wireless communications and signal processing (WCSP) (IEEE, 2019), pp. 1–6

  15. Xu, X., Wu, Q., Qi, L., Dou, W., Tsai, S. B., & Bhuiyan, M. Z. A. (2020). Trust-Aware Service Offloading for Video Surveillance in Edge Computing Enabled Internet of Vehicles. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2020.2995622.

  16. He, L., Lei, J., & Huang, Y. (2019). A greedy spreading serial decoding of LT codes. IEEE Access, 7, 31186.

    Article  Google Scholar 

  17. He, J., Hussain, I., Li, Y., Juntti, M., & Matsumoto, T. (2019). Distributed LT codes with improved error floor performance. IEEE Access, 7, 8102.

    Article  Google Scholar 

  18. Xu, X., Liu, X., Xu, Z., Dai, F., Zhang, X., & Qi, L. (2019). Trust-oriented IoT service placement for smart cities in edge computing. IEEE Internet of Things Journal, 7(5), 4084.

    Article  Google Scholar 

  19. Sun, L., Ren, P., Du, Q., & Wang, Y. (2015). Fountain-coding aided strategy for secure cooperative transmission in industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 12(1), 291.

    Article  Google Scholar 

  20. Luo, S., Li, J., & Petropulu, A. P. (2013). Uncoordinated cooperative jamming for secret communications. IEEE Transactions on Information Forensics and Security, 8(7), 1081.

    Article  Google Scholar 

  21. Wang, S., Urgaonkar, R., Zafer, M., He, T., Chan, K., & Leung, K. K. (2019). Dynamic service migration in mobile edge computing based on markov decision process. IEEE/ACM Transactions on Networking, 27(3), 1272.

    Article  Google Scholar 

  22. Karthick, G., Mapp, G., Kammueller, F., Aiash, M. Formalization and analysis of a resource allocation security protocol for secure service migration. In 2018 IEEE/ACM international conference on utility and cloud computing companion (UCC companion) (IEEE, 2018), pp. 207–212

  23. Alsaffar, A. A., & Huh, E. N. (2011). Secure migration service for mobile IPTV Using DCAS. Information Technology Journal, 10(11), 2044.

    Article  Google Scholar 

  24. Nie, H., Jiang, X., Tang, W., Zhang, S., Dou, W. (2020). Data security over wireless transmission for enterprise multimedia security with fountain codes. Multimedia tools and applications pp. 1–23

  25. Jun, B., Yang, P., No, J. S., & Park, H. (2016). New fountain codes with improved intermediate recovery based on batched zigzag coding. IEEE Transactions on Communications, 65(1), 23.

    Google Scholar 

  26. Li, Z., Jing, T., Cheng, X., Huo, Y., Zhou, W., Chen, D. Cooperative jamming for secure communications in MIMO cooperative cognitive radio networks. In 2015 IEEE international conference on communications (ICC) (IEEE, 2015), pp. 7609–7614

  27. Huo, Y., Fan, X., Ma, L., Cheng, X., Tian, Z., & Chen, D. (2019). Secure communications in tiered 5G wireless networks with cooperative jamming. IEEE Transactions on Wireless Communications, 18(6), 3265.

    Article  Google Scholar 

  28. Hung, D., Duy, T., & Trinh, D. (2019). Security-reliability analysis of multi-hop LEACH protocol with fountain codes and cooperative jamming. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 6(18)

  29. Kadi, N., Al Agha, K. New degree distribution to improve LT-code in network coding for broadcasting in ad-hoc wireless networks. In 21st annual ieee international symposium on personal, indoor and mobile radio communications (IEEE, 2010), pp. 1820–1825

  30. Li, W., Du, Q., Sun, L., Ren, P., Wang, Y. Security enhanced via dynamic fountain code design for wireless delivery. In 2016 IEEE wireless communications and networking conference (IEEE, 2016), pp. 1–6

  31. Severinson, A., & A.G. i Amat, E. Rosnes,. (2018). Block-diagonal and LT codes for distributed computing with straggling servers. IEEE Transactions on Communications, 67(3), 1739.

    Article  Google Scholar 

  32. Yao, W., Yi, B., Huang, T., & Li, W. (2016). Poisson robust soliton distribution for LT codes. IEEE Communications Letters, 20(8), 1499.

    Article  Google Scholar 

  33. Vishwakarma, S., Chockalingam, A. Sum secrecy rate in miso full-duplex wiretap channel with imperfect csi. In 2015 IEEE Globecom workshops (GC Wkshps) (IEEE, 2015), pp. 1–6

  34. Fan, L., Zhao, N., Lei, X., Chen, Q., Yang, N., & Karagiannidis, G. K. (2018). Outage probability and optimal cache placement for multiple amplify-and-forward relay networks. IEEE Transactions on Vehicular Technology, 67(12), 12373.

    Article  Google Scholar 

  35. Lee, H., Song, C., Choi, S. H., & Lee, I. (2016). Outage probability analysis and power splitter designs for SWIPT relaying systems with direct link. IEEE Communications Letters, 21(3), 648.

    Article  Google Scholar 

  36. Im, G., & Lee, J. H. (2019). Outage probability for cooperative NOMA systems with imperfect SIC in cognitive radio networks. IEEE Communications Letters, 23(4), 692.

    Article  Google Scholar 

  37. Raphaeli, D. (1996). Distribution of noncentral indefinite quadratic forms in complex normal variables. IEEE Transactions on Information Theory, 42(3), 1002.

    Article  MathSciNet  Google Scholar 

  38. Wang, J., Swindlehurst, A.L. Cooperative jamming in MIMO ad-hoc networks. In 2009 conference record of the forty-third asilomar conference on signals, systems and computers (IEEE, 2009), pp. 1719–1723

  39. Dong, L., Han, Z., Petropulu, A. P., & Poor, H. V. (2009). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58(3), 1875.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by the Financial and Science Technology Plan Project of Xinjiang Production and Construction Corps, under Grant Nos. 2017DB005 and 2020DB005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhan Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, M., Zhang, H., Huang, Y. et al. A Fountain-Coding Based Cooperative Jamming Strategy for Secure Service Migration in Edge Computing. Wireless Netw (2021). https://doi.org/10.1007/s11276-020-02537-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-020-02537-3

Keywords

Navigation