Skip to main content

Advertisement

Log in

Distributed self-optimizing interference management in ultra-dense networks with non-orthogonal multiple access

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Both non-orthogonal multiple access (NOMA) and ultra-dense network (UDN) are promising technologies in future wireless networks. However, considering the overlapped coverage of small base stations (SBSs) and the spectrum sharing with NOMA, interference management (IM) becomes a more complex and fundamental problem. Moreover, considering the massive SBSs and dynamic network conditions in UDN, more efficient mechanisms need to be designed to deal with the IM issue. Thus, we propose a distributed self-optimizing interference management approach to address both the intra-cell interference caused by NOMA and the inter-cell interference among dense deployed SBSs. Aiming to minimize the interference and guarantee the users’ requirements, we mathematically formulate the joint resource allocation and user selection problem with consideration of the diverse user requirements, complicated interference topology, and limited resources. Furthermore, we consider the imperfections of successive interference cancellation at receivers for separating and decoding superimposed signals and analyze the impacts of residual interference and outage probability in NOMA-based UDNs. For tractability purpose, we introduce interference graph and satisfaction game theory and propose distributed algorithms to solve the problem. Simulation results show that interference can be reduced significantly in UDNs with NOMA compared with the traditional IM approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen, L., Yu, F. R., Ji, H., Rong, B., Li, X., & Leung, V. C. M. (2016). Green full-duplex self-backhaul and energy harvesting small cell networks with massive MIMO. IEEE Journal on Selected Areas in Communications, 34(12), 3709–3724.

    Article  Google Scholar 

  2. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  3. Ge, X., Tu, S., Mao, G., Wang, C. X., & Han, T. (2016). 5G ultra-dense cellular networks. IEEE Wireless Communications, 23(1), 72–79.

    Article  Google Scholar 

  4. Islam, S. M. R., Avazov, N., Dobre, O. A., & s. Kwak, K. (2017). Power-domain non-orthogonal multiple access (noma) in 5g systems: Potentials and challenges. IEEE Communications Surveys Tutorials, 19(2), 721–742.

    Article  Google Scholar 

  5. Chen, S., Qin, F., Hu, B., Li, X., & Chen, Z. (2016). User-centric ultra-dense networks for 5G: Challenges, methodologies, and directions. IEEE Wireless Communications, 23(2), 78–85.

    Article  Google Scholar 

  6. Lyu, X., Tian, H., Ni, W., Liu, R. P., & Zhang, P. (2017). Adaptive centralized clustering framework for software-defined ultra-dense wireless networks. IEEE Transactions on Vehicular Technology, 66(9), 8553–8557.

    Article  Google Scholar 

  7. Gu, Y., Cui, Q., Chen, Y., Ni, W., Tao, X., & Zhang, P. (2018). Effective capacity analysis in ultra-dense wireless networks with random interference. IEEE Access, 6, 19499–19508.

    Article  Google Scholar 

  8. Kim, J., & Cho, D. H. (2010). A joint power and subchannel allocation scheme maximizing system capacity in indoor dense mobile communication systems. IEEE Transactions on Vehicular Technology, 59(9), 4340–4353.

    Article  Google Scholar 

  9. Yang, C., Li, J., Semasinghe, P., Hossain, E., Perlaza, S. M., & Han, Z. (2017). Distributed interference and energy-aware power control for ultra-dense d2d networks: A mean field game. IEEE Transactions on Wireless Communications, 16(2), 1205–1217.

    Article  Google Scholar 

  10. Xiao, J., Yang, C., Wang, J., & Dai, H. (2016). Joint interference management in ultra-dense small cell networks: A multi-dimensional coordination. In Proceedings of WCSP’16, Yangzhou, China.

  11. Mahmood, N. H., Berardinelli, G., Pedersen, K. I., & Mogensen, P. (2015). An interference-aware distributed transmission technique for dense small cell networks. In Proceedings of IEEE ICC WKSHPS’15, London, UK.

  12. Abdelnasser, A., & Hossain, E. (2013). Subchannel and power allocation schemes for clustered femtocells in two-tier OFDMA hetnets. In Proceedings of IEEE ICC WKSHPS’13, Budapest, Hungary.

  13. Xiao, J., Yang, C., Anpalagan, A., Ni, Q., & Guizani, M. (2018). Joint interference management in ultra-dense small cell networks: A multi-domain coordination perspective. IEEE Transactions on Communications, 66, 5470–5481.

    Article  Google Scholar 

  14. Yang, C., Dai, H., Li, J., Zhang, Y., & Han, Z. (2018). Distributed interference-aware power control in ultra-dense small cell networks: A robust mean field game. IEEE Access, 6, 12608–12619.

    Article  Google Scholar 

  15. Liu, Y., Li, X., Yu, F. R., Ji, H., Zhang, H., & Leung, V. C. M. (2017). Grouping and cooperating among access points in user-centric ultra-dense networks with non-orthogonal multiple access. IEEE Journal on Selected Areas in Communications, 35(10), 2295–2311.

    Article  Google Scholar 

  16. Zhang, Z., Yang, G., Ma, Z., Xiao, M., Ding, Z., & Fan, P. (2018). Heterogeneous ultradense networks with noma: System architecture, coordination framework, and performance evaluation. IEEE Vehicular Technology Magazine, 13(2), 110–120.

    Article  Google Scholar 

  17. Fang, F., Zhang, H., Cheng, J., & Leung, V. C. M. (2016). Energy-efficient resource allocation for downlink non-orthogonal multiple access network. IEEE Transactions on Communications, 64(9), 3722–3732.

    Article  Google Scholar 

  18. Ali, M. S., Tabassum, H., & Hossain, E. (2016). Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems. IEEE Access, 4, 6325–6343.

    Google Scholar 

  19. Wang, X., Zhang, H., Tian, Y., Ding, Z., & Leung, V. C. M. (2018). Locally cooperative interference mitigation for small cell networks with non-orthogonal multiple access: A potential game approach. In Proceedings of IEEE ICC’18 (pp. 1–6).

  20. Ali, K. S., Elsawy, H., Chaaban, A., & Alouini, M. S. (2017). Non-orthogonal multiple access for large-scale 5G networks: Interference aware design. IEEE Access, 5, 21204–21216.

    Article  Google Scholar 

  21. Chen, Z., Ding, Z., & Dai, X. (2016). Beamforming for combating inter-cluster and intra-cluster interference in hybrid noma systems. IEEE Access, 4, 4452–4463.

    Article  Google Scholar 

  22. Zhang, Z., Sun, H., & Hu, R. Q. (2017). Downlink and uplink non-orthogonal multiple access in a dense wireless network. IEEE Journal on Selected Areas in Communications, 35(12), 2771–2784.

    Article  Google Scholar 

  23. Wang, X., Zhang, H., Tian, Y., Zhu, C., & Leung, V. C. M. (2018). Optimal distributed interference mitigation for small cell networks with non-orthogonal multiple access: A locally cooperative game. IEEE Access, 6, 63107–63119.

    Article  Google Scholar 

  24. Deb, S., & Monogioudis, P. (2015). Learning-based uplink interference management in 4G LTE cellular systems. IEEE/ACM Transactions on Networking, 23(2), 398–411.

    Article  Google Scholar 

  25. López-Pérez, D., Ladanyi, A., Jüttner, A., & Zhang, J. (2009). OFDMA femtocells: A self-organizing approach for frequency assignment. In Proceedings of IEEE PIMRC’09, Tokyo, Japan.

  26. Gelabert, X., Sayrac, B., & Jemaa, S. B. (2014). A heuristic coordination framework for self-optimizing mechanisms in LTE hetnets. IEEE Transactions on Vehicular Technology, 63(3), 1320–1334.

    Article  Google Scholar 

  27. Zhang, H., Wang, Y., & Ji, H. (2016). Resource optimization-based interference management for hybrid self-organized small-cell network. IEEE Transactions on Vehicular Technology, 65(2), 936–946.

    Article  Google Scholar 

  28. Adedoyin, M., & Falowo, O. (2016). Self-organizing radio resource management for next generation heterogeneous wireless networks. In Proceedings of IEEE ICC’16, Kuala Lumpur, Malaysia.

  29. Shin, W., Vaezi, M., Lee, B., Love, D. J., Lee, J., & Poor, H. V. (2017). Non-orthogonal multiple access in multi-cell networks: Theory, performance, and practical challenges. IEEE Communications Magazine, 55(10), 176–183.

    Article  Google Scholar 

  30. You, L., Lei, L., Yuan, D., Sun, S., Chatzinotas, S., & Ottersten, B. (2017). A framework for optimizing multi-cell noma: Delivering demand with less resource. In Proceedings of IEEE GLOBECOM’17 (pp. 1–7).

  31. Luo, C., Yu, F. R., Ji, H., & Leung, V. C. M. (2010). Cross-layer design for TCP performance improvement in cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(5), 2485–2495.

    Article  Google Scholar 

  32. Ali, K. S., Elsawy, H., Chaaban, A., & Alouini, M. (2017). Non-orthogonal multiple access for large-scale 5g networks: Interference aware design. IEEE Access, 5, 21204–21216.

    Article  Google Scholar 

  33. Chen, D. C., Quek, T. Q. S., & Kountouris, M. (2015). Backhauling in heterogeneous cellular networks: Modeling and tradeoffs. IEEE Transactions on Wireless Communications, 14(6), 3194–3206.

    Article  Google Scholar 

  34. Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953.

    Article  Google Scholar 

  35. Sheng, M., Xu, C., Wang, X., Zhang, Y., Han, W., & Li, J. (2014). Utility-based resource allocation for multi-channel decentralized networks. IEEE Transactions on Communications, 62(10), 3610–3620.

    Article  Google Scholar 

  36. Li, G., & Liu, H. (2006). Downlink radio resource allocation for multi-cell OFDMA system. IEEE Transactions on Wireless Communications, 5(12), 3451–3459.

    Article  Google Scholar 

  37. Bondy, J. A., Murty, U. S. R., et al. (1976). Graph theory with applications (Vol. 290). Citeseer.

  38. Perlaza, S. M., Tembine, H., Lasaulce, S., & Debbah, M. (2012). Quality-of-service provisioning in decentralized networks: A satisfaction equilibrium approach. IEEE Journal of Selected Topics in Signal Processing, 6(2), 104–116.

    Article  Google Scholar 

  39. ETSI, L. Evolved universal terrestrial radio access (e-utra); physical channels and modulation. ETSI TS 136(211), V9

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61771070 and Grant No. 61671088) and the Canadian Natural Sciences and Engineering Research Council (Grant No. RGPIN-2019-06348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yu, F.R., Li, X. et al. Distributed self-optimizing interference management in ultra-dense networks with non-orthogonal multiple access. Wireless Netw 26, 2809–2823 (2020). https://doi.org/10.1007/s11276-019-02215-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02215-z

Keywords

Navigation