Skip to main content
Log in

Enhancing iris template matching with the optimal path method

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Iris recognition provides a way to obtain a unique biometry-based digital key, which cannot be lost or forgotten. The accuracy of iris matching is strongly affected by correctness of alignment of its local features. It is proposed to split the matched images into several segments, then the alignment is sought using the method of the optimal path. The influence of the number of segments and restrictions on the mobility of neighboring segments on the recognition accuracy is investigated. Computational experiments were carried out with ICE2005 and CASIA databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bowyer, K., Hollingsworth, K., & Flynn, P. (2013). A survey of iris biometrics research: 2008–2010. In M. J. Burge & K. W. Bowyer (Eds.), Handbook of iris recognition, advances in computer vision and pattern recognition (pp. 15–54). London: Springer. https://doi.org/10.1007/978-1-4471-4402-1-2.

    Chapter  Google Scholar 

  2. Bowyer, K. W., Hollingsworth, K., & Flynn, P. J. (2008). Image understanding for iris biometrics: A survey. Computer Vision and Image Understanding, 110(2), 281–307. https://doi.org/10.1016/j.cviu.2007.08.005.

    Article  Google Scholar 

  3. Daugman, J. (2002). How iris recognition works. Proceeding International Conference on Image Processing, 1, I-33–I-36.

    Article  Google Scholar 

  4. Daugman, J. G. (1993). High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11), 1148–1161.

    Article  Google Scholar 

  5. Erbilek, M., & Toygar, O. (2009). Recognizing partially occluded irises using subpattern-based approaches. In 2009 24th international symposium on computer and information sciences (pp. 606–610). https://doi.org/10.1109/ISCIS.2009.5291890

  6. Gankin, K., Gneushev, A., & Matveev, I. (2014). Iris image segmentation based on approximate methods with subsequent refinements. Journal of Computer and Systems Sciences International, 53(2), 224–238.

    Article  Google Scholar 

  7. Hao, F., Anderson, R., & Daugman, J. (2006). Combining crypto with biometrics effectively. IEEE Transactions on Computers, 55(9), 1081–1088. https://doi.org/10.1109/TC.2006.138.

    Article  Google Scholar 

  8. He, Z., Tan, T., Sun, Z., & Qiu, X. (2009). Toward accurate and fast iris segmentation for iris biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(9), 1670–1684.

    Article  Google Scholar 

  9. Institute of Automation, Chinese Academy of Sciences: CASIA Iris Image Database (2010). http://biometrics.idealtest.org/.

  10. Ives, R. W., Guidry, A. J., & Etter, D. M. (2004). Iris recognition using histogram analysis. In Conference record of the thirty-eighth asilomar conference on signals, systems and computers, 2004,(Vol. 1, pp. 562–566). https://doi.org/10.1109/ACSSC.2004.1399196

  11. Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., & Qiu, D. (2014). Security of the internet of things: Perspectives and challenges. Wireless Networks, 20(8), 2481–2501. https://doi.org/10.1007/s11276-014-0761-7.

    Article  Google Scholar 

  12. Kerekes, R., Balakrishnan, N., Thornton, J., Savvides, M., & Kumar, B. V. K. V. (2007) Graphical model approach to iris matching under deformation and occlusion. In CVPR (pp. 1–6). IEEE Computer Society. http://www.cs.cmu.edu/~muralib/cvprDraft.pdf

  13. Li, X. (2005). Modeling intra-class variation for nonideal iris recognition. In D. Zhang & A. Jain (Eds.), Advances in biometrics, lecture notes in computer science (Vol. 3832, pp. 419–427). Heidelberg: Springer. https://doi.org/10.1007/11608288-56.

    Chapter  Google Scholar 

  14. Liu, J. (2011). A novel image deblurring method to improve iris recognition accuracy. In IEEE international joint conference on biometrics (pp. 1–8)

  15. Miyazawa, K., Ito, K., Aoki, T., Kobayashi, K., & Nakajima, H. (2005). An efficient iris recognition algorithm using phase-based image matching. In IEEE international conference on image processing 2005 (Vol. 2, pp. II49–II52). https://doi.org/10.1109/ICIP.2005.1529988

  16. Pavelieva, E. A. (2013). Searching for correspondences between the key points of the images of the irises of the eyes using the method of the projected phase correlation. Systems and Means of Informatics, 23(2), 74–88.

    Google Scholar 

  17. Phang, S. S., Boles, W. W., & Collins, M. J.(2006). Tracking iris surface deformation using elastic graph matching. In Proceedings of the twenty-first international conference, image and vision computing new zealand (IVCNZ2006), Great Barrier Island, New Zealand (pp. 3–8)

  18. Phillips, P. J., Scruggs, W. T., O’Toole, A. J., Flynn, P. J., Bowyer, K. W., Schott, C. L., et al. (2010). Frvt 2006 and ice 2006 large-scale experimental results. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5), 831–846.

    Article  Google Scholar 

  19. Songjang, T., & Thainimit, S. (2015). Tracking and modeling human iris surface deformation. In 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 1–5). https://doi.org/10.1109/ECTICon.2015.7207025

  20. Sun, Z., & Tan, T. (2009). Ordinal measures for iris recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12), 2211–2226. https://doi.org/10.1109/TPAMI.2008.240.

    Article  Google Scholar 

  21. Thainimit, S., Alexandre, L., & de Almeida, V. (2013). Iris surface deformation and normalization. In 2013 13th international symposium on communications and information technologies (ISCIT) (pp. 501–506). https://doi.org/10.1109/ISCIT.2013.6645910.

  22. Vivekanand, D., Schmid, N. A., & Fahmy, G. (2005). Performance evaluation of iris-based recognition system implementing PCA and ICA encoding techniques. In Proceedings volume 5779, biometric technology for human identification II. https://doi.org/10.1117/12.604201.

  23. Wildes, R. (1997). Iris recognition: An emerging biometric technology. Proceedings of the IEEE, 85(9), 1348–1363.

    Article  Google Scholar 

  24. Xu, J., Yang, J., Guo, C., Lee, Y. H., & Lu, D. (2015). Routing algorithm of minimizing maximum link congestion on grid networks. Wireless Networks, 21(5), 1713–1732. https://doi.org/10.1007/s11276-014-0878-8.

    Article  Google Scholar 

  25. Zhang, M., Sun, Z., & Tan, T. (2011). Deformable daisy matcher for robust iris recognition. In 2011 18th IEEE international conference on image processing (pp. 3189–3192). https://doi.org/10.1109/ICIP.2011.6116346

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Matveev.

Additional information

The authors would like to appreciate the opportunity to present the results at COMPSE 2018, Bangkok, Thailand. The work is supported by the Russian Foundation of Basic Research, Project No. 16-51-55019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novik, V., Matveev, I. & Litvinchev, I. Enhancing iris template matching with the optimal path method. Wireless Netw 26, 4861–4868 (2020). https://doi.org/10.1007/s11276-018-1891-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1891-0

Keywords

Mathematics Subject Classification

Navigation