Skip to main content

Advertisement

Log in

Power-domain non orthogonal multiple access (PD-NOMA) in cooperative networks: an overview

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Non-orthogonal multiple access (NOMA) scheme is emerging as a favourable multiple access scheme for future 5G networks. Compared to orthogonal multiple access techniques, NOMA provides spectral efficiency, user fairness, better connectivity, enhanced data rate and reduced latency. Thus, NOMA can be a suitable multiple access technique for 5G networks. On the other hand, in wireless networks, cooperation is a well-recognized proven technique for performance enhancement. Cooperative networks offer multiple desirable advantages, including high performance, reliability and greater coverage area. It is believed that in future 5G systems, many existing wireless technologies will be combined with new technologies. Power domain-NOMA (PD-NOMA) has features that can provide opportunities of improved performance and better spectral utilization for downlink cooperative networks. Recently, research works of incorporating PD-NOMA in cooperative networks have gained attention of researchers around the globe. This article surveys the recent research trends in PD-NOMA based cooperative network by reviewing related recent research on performance analysis of cooperative PD-NOMA systems, resources allocation, and impact of relay selection. Additionally, this review article discusses the performance of cooperative PD-NOMA networks when they are integrated with other 5G technologies including cognitive radio, full duplex radio and wireless energy harvesting. Furthermore, some unaddressed issues are highlighted for future research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yilmaz, O. N., Wang, Y.-P. E., Johansson, N. A., Brahmi, N., Ashraf, S. A., & Sachs, J. (2015). Analysis of ultra-reliable and low-latency 5G communication for a factory automation use case. In 2015 IEEE international conference on communication workshop (ICCW) (pp. 1190–1195).

  2. Pirinen, P. (2014). A brief overview of 5G research activities. In 2014 1st international conference on 5G for ubiquitous connectivity (5GU) (pp. 17–22).

  3. Panwar, N., Sharma, S., & Singh, A. K. (2016). A survey on 5G: The next generation of mobile communication. Physical Communication,18, 64–84.

    Google Scholar 

  4. Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., Chih-Lin, I., et al. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine,55, 185–191.

    Google Scholar 

  5. Fodor, G., Dahlman, E., Mildh, G., Parkvall, S., Reider, N., Miklós, G., et al. (2012). Design aspects of network assisted device-to-device communications. IEEE Communications Magazine,50, 170–177.

    Google Scholar 

  6. Fitzek, F. H., & Katz, M. D. (2006). Cooperation in wireless networks: Principles and applications. Berlin: Springer.

    Google Scholar 

  7. Hossain, E., Kim, D. I., & Bhargava, V. K. (2011). Cooperative cellular wireless networks. Cambridge: Cambridge University Press.

    Google Scholar 

  8. Awad, M. K., & Shen, X. S. (2008). OFDMA based two-hop cooperative relay network resources allocation. In IEEE international conference on communications, 2008. ICC’08 (pp. 4414–4418).

  9. Deng, J., Dowhuszko, A. A., Freij, R., & Tirkkonen, O. (2015). Relay selection and resource allocation for D2D-relaying under uplink cellular power control. In 2015 IEEE Globecom workshops (GC Wkshps) (pp. 1–6).

  10. Zhao, Q., Mao, Y., Leng, S., & Wang, H. (2015). Multimedia traffic placement under 5G radio access techniques in indoor environments. In 2015 IEEE international conference on communications (ICC) (pp. 3891–3896).

  11. Al-Dulaimi, A., Al-Rubaye, S., Ni, Q., & Sousa, E. (2015). 5G communications race: Pursuit of more capacity triggers LTE in unlicensed band. IEEE Vehicular Technology Magazine,10, 43–51.

    Google Scholar 

  12. Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters,19, 1462–1465.

    Google Scholar 

  13. Islam, S. M. R., Avazov, N., Dobre, O. A., & Kwak, K.-S. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys & Tutorials,19, 721–742.

    Google Scholar 

  14. Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., & Hanzo, L. (2017). Nonorthogonal multiple access for 5G and beyond. Proceedings of the IEEE,105, 2347–2381.

    Google Scholar 

  15. Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., & Wang, Z. (2015). Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine,53, 74–81.

    Google Scholar 

  16. Dai, L., Wang, B., Ding, Z., Wang, Z., Chen, S., & Hanzo, L. (2018). A survey of non-orthogonal multiple access for 5G. IEEE Communications Surveys & Tutorials. https://doi.org/10.1109/COMST.2018.2835558.

    Article  Google Scholar 

  17. Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. (2017). A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE Journal on Selected Areas in Communications, 35(10), 2181–2195.

    Google Scholar 

  18. Chen, Y., Bayesteh, A., Wu, Y., Ren, B., Kang, S., Sun, S., et al. (2018). Toward the standardization of non-orthogonal multiple access for next generation wireless networks. IEEE Communications Magazine,56, 19–27.

    Google Scholar 

  19. Yang, S., Chen, P., Liang, L., Zhu, J., & She, X. (2017). Uplink multiple access schemes for 5G: A survey. ZTE Communications, 15(S1). https://doi.org/10.3969/j.issn.1673-5188.2017.S1.004.

  20. Ye, N., Han, H., Zhao, L., & Wang, A.-H. (2018). Uplink nonorthogonal multiple access technologies toward 5G: A survey. Wireless Communications and Mobile Computing,2018, 1–26.

    Google Scholar 

  21. Basharat, M., Ejaz, W., Naeem, M., Khattak, A. M., & Anpalagan, A. (2018). A survey and taxonomy on nonorthogonal multiple-access schemes for 5G networks. Transactions on Emerging Telecommunications Technologies,29, e3202.

    Google Scholar 

  22. Song, L., Li, Y., Ding, Z., & Poor, H. V. (2016). Resource management in non-orthogonal multiple access networks for 5G and beyond. arXiv preprint arXiv:1610.09465.

  23. Mohammed, A.-I., Imran, M. A., Tafazolli, R., & Chen, D. (2012). Performance evaluation of low density spreading multiple access. In 2012 8th international wireless communications and mobile computing conference (IWCMC) (pp. 383–388).

  24. Nikopour, H., & Baligh, H. (2013). Sparse code multiple access. In 2013 IEEE 24th international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 332–336).

  25. Taherzadeh, M., Nikopour, H., Bayesteh, A., & Baligh, H. (2014). SCMA codebook design. In 2014 IEEE 80th vehicular technology conference (VTC Fall) (pp. 1–5).

  26. Zeng, J., Li, B., Su, X., Rong, L., & Xing, R. (2015). Pattern division multiple access (PDMA) for cellular future radio access. In 2015 international conference on wireless communications & signal processing (WCSP) (pp. 1–5).

  27. Akbil, B., & Aboutajdine, D. (2015). Improved IDMA for multiple access of 5G. International Journal of Communication Networks and Information Security,7, 138.

    Google Scholar 

  28. Wei, Z., Yuan, J., Ng, D. W. K., Elkashlan, M., & Ding, Z. (2016). A survey of downlink non-orthogonal multiple access for 5G wireless communication networks. arXiv preprint arXiv:1609.01856.

  29. Ding, Z., Fan, P., & Poor, H. V. (2016). Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Transactions on Vehicular Technology,65, 6010–6023.

    Google Scholar 

  30. Chen, Z., Ding, Z., Dai, X., & Zhang, R. (2017). An optimization perspective of the superiority of NOMA compared to conventional OMA. IEEE Transactions on Signal Processing,65, 5191–5202.

    MathSciNet  MATH  Google Scholar 

  31. Timotheou, S., & Krikidis, I. (2015). Fairness for non-orthogonal multiple access in 5G systems. IEEE Signal Processing Letters,22, 1647–1651.

    Google Scholar 

  32. Jiang, D., Huo, L., & Li, Y. (2018). Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE,13, e0194302.

    Google Scholar 

  33. The 3rd Generation Partnership Project (3GPP). (2015). Study on downlink multiuser superposition transmission for LTE, March 2015.

  34. Zhang, L., Li, W., Wu, Y., Wang, X., Park, S.-I., Kim, H. M., et al. (2016). Layered-division-multiplexing: Theory and practice. IEEE Transactions on Broadcasting,62, 216–232.

    Google Scholar 

  35. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In 2013 IEEE 77th vehicular technology conference (VTC Spring) (pp. 1–5).

  36. Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013). System-level performance evaluation of downlink non-orthogonal multiple access (NOMA). In 2013 IEEE 24th international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 611–615).

  37. Ding, Z., Yang, Z., Fan, P., & Poor, H. V. (2014). On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Processing Letters,21, 1501–1505.

    Google Scholar 

  38. Sun, Q., Han, S., Chin-Lin, I., & Pan, Z. (2015). On the ergodic capacity of MIMO NOMA systems. IEEE Wireless Communications Letters,4, 405–408.

    Google Scholar 

  39. Liu, Y., Elkashlan, M., Ding, Z., & Karagiannidis, G. K. (2016). Fairness of user clustering in MIMO non-orthogonal multiple access systems. IEEE Communications Letters,20, 1465–1468.

    Google Scholar 

  40. Ding, Z., Schober, R., & Poor, H. V. (2016). A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Transactions on Wireless Communications,15, 4438–4454.

    Google Scholar 

  41. Ding, Z., & Poor, H. V. (2016). Design of massive-MIMO-NOMA with limited feedback. IEEE Signal Processing Letters,23, 629–633.

    Google Scholar 

  42. Ding, Z., Dai, L., & Poor, H. V. (2016). MIMO-NOMA design for small packet transmission in the Internet of Things. IEEE Access,4, 1393–1405.

    Google Scholar 

  43. Liu, Y., Ding, Z., Elkashlan, M., & Yuan, J. (2016). Nonorthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Transactions on Vehicular Technology,65, 10152–10157.

    Google Scholar 

  44. Choi, J. (2015). Minimum power multicast beamforming with superposition coding for multiresolution broadcast and application to NOMA systems. IEEE Transactions on Communications,63, 791–800.

    Google Scholar 

  45. Chen, Z., Ding, Z., Dai, X., & Karagiannidis, G. K. (2016). On the application of quasi-degradation to MISO-NOMA downlink. IEEE Transactions on Signal Processing,64, 6174–6189.

    MathSciNet  MATH  Google Scholar 

  46. Otao, N., Kishiyama, Y., & Higuchi, K. (2012). Performance of non-orthogonal access with SIC in cellular downlink using proportional fair-based resource allocation. In 2012 international symposium on wireless communication systems (ISWCS) (pp. 476–480).

  47. Liu, F., Mähönen, P., & Petrova, M. (2015). Proportional fairness-based user pairing and power allocation for non-orthogonal multiple access. In 2015 IEEE 26th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 1127–1131).

  48. Lei, L., Yuan, D., Ho, C. K., & Sun, S. (2016). Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability and computation. IEEE Transactions on Wireless Communications,15, 8580–8594.

    Google Scholar 

  49. Cui, J., Ding, Z., & Fan, P. (2016). A novel power allocation scheme under outage constraints in NOMA systems. IEEE Signal Processing Letters,23, 1226–1230.

    Google Scholar 

  50. Sun, Y., Ng, D. W. K., Ding, Z., & Schober, R. (2016). Optimal joint power and subcarrier allocation for MC-NOMA systems. arXiv preprint arXiv:1603.08132.

  51. Shi, S., Yang, L., & Zhu, H. (2016). Outage balancing in downlink nonorthogonal multiple access with statistical channel state information. IEEE Transactions on Wireless Communications,15, 4718–4731.

    Google Scholar 

  52. Di, B., Bayat, S., Song, L., & Li, Y. (2015). Radio resource allocation for downlink non-orthogonal multiple access (NOMA) networks using matching theory. In 2015 IEEE global communications conference (GLOBECOM) (pp. 1–6).

  53. Han, S., Chih-Lin, I., Xu, Z., & Sun, Q. (2014). Energy efficiency and spectrum efficiency co-design: From NOMA to network NOMA. E-Letter.

  54. Sun, Q., Han, S., Chin-Lin, I., & Pan, Z. (2015). Energy efficiency optimization for fading MIMO non-orthogonal multiple access systems. In 2015 IEEE international conference on communications (ICC) (pp. 2668–2673).

  55. Marshoud, H., Kapinas, V. M., Karagiannidis, G. K., & Muhaidat, S. (2016). Non-orthogonal multiple access for visible light communications. IEEE Photonics Technology Letters,28, 51–54.

    Google Scholar 

  56. Liu, Y., Ding, Z., Eïkashlan, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems with SWIPT. In 2015 23rd European signal processing conference (EUSIPCO) (pp. 1999–2003).

  57. Diamantoulakis, P. D., Pappi, K. N., Ding, Z., & Karagiannidis, G. K. (2016). Optimal design of non-orthogonal multiple access with wireless power transfer. In 2016 IEEE international conference on communications (ICC) (pp. 1–6).

  58. Zhou, F., Wu, Y., Liang, Y.-C., Li, Z., Wang, Y., & Wong, K.-K. (2018). State of the art, taxonomy, and open issues on cognitive radio networks with NOMA. IEEE Wireless Communications,25, 100–108.

    Google Scholar 

  59. Shirvanimoghaddam, M., Condoluci, M., Dohler, M., & Johnson, S. J. (2017). On the fundamental limits of random non-orthogonal multiple access in cellular massive IoT. arXiv preprint arXiv:1705.10471.

  60. Zhang, Z., Sun, H., & Hu, R. Q. (2017). Downlink and uplink non-orthogonal multiple access in a dense wireless network. IEEE Journal on Selected Areas in Communications,35(12), 2771–2784.

    Google Scholar 

  61. Laneman, J. N., Tse, D. N., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory,50, 3062–3080.

    MathSciNet  MATH  Google Scholar 

  62. Kramer, G., Gastpar, M., & Gupta, P. (2005). Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory,51, 3037–3063.

    MathSciNet  MATH  Google Scholar 

  63. Simoens, S., Muñoz-Medina, O., Vidal, J., & Del Coso, A. (2010). Compress-and-forward cooperative MIMO relaying with full channel state information. IEEE Transactions on Signal Processing,58, 781–791.

    MathSciNet  MATH  Google Scholar 

  64. Hanzo, L. L., Alamri, O., El-Hajjar, M., & Wu, N. (2009). Near-capacity multi-functional MIMO systems: Sphere-packing, iterative detection and cooperation (Vol. 4). London: Wiley.

    MATH  Google Scholar 

  65. Bao, X., & Li, J. (2007). Efficient message relaying for wireless user cooperation: Decode-amplify-forward (DAF) and hybrid DAF and coded-cooperation. IEEE Transactions on Wireless Communications,6, 3975–3984.

    Google Scholar 

  66. Kim, J.-B., & Lee, I.-H. (2015). Capacity analysis of cooperative relaying systems using non-orthogonal multiple access. IEEE Communications Letters,19, 1949–1952.

    Google Scholar 

  67. Men, J., Ge, J., & Zhang, C. (2017). Performance analysis of nonorthogonal multiple access for relaying networks over Nakagami-m fading channels. IEEE Transactions on Vehicular Technology,66, 1200–1208.

    Google Scholar 

  68. Yue, X., Liu, Y., Kang, S., & Nallanathan, A. (2017). Performance analysis of NOMA with fixed gain relaying over Nakagami-m fading channels. IEEE Access,5, 5445–5454.

    Google Scholar 

  69. Wan, D., Wen, M., Ji, F., Liu, Y., & Huang, Y. (2018). Cooperative NOMA systems with partial channel state information over Nakagami-m fading channels. IEEE Transactions on Communications,66, 947–958.

    Google Scholar 

  70. Jiao, R., Dai, L., Zhang, J., MacKenzie, R., & Hao, M. (2017). On the performance of NOMA-based cooperative relaying systems over Rician fading channels. IEEE Transactions on Vehicular Technology,66, 11409–11413.

    Google Scholar 

  71. Jha, P. K., & Kumar, D. S. (2018). Achievable rate analysis of relay assisted cooperative NOMA over Rician fading channels. In 2018 4th international conference on recent advances in information technology (RAIT) (pp. 1–5).

  72. He, J., Tervo, V., Qian, S., Xue, Q., Juntti, M., & Matsumoto, T. (2018). Performance analysis of lossy decode-and-forward for non-orthogonal MARCs. IEEE Transactions on Wireless Communications,17, 1545–1558.

    Google Scholar 

  73. Luo, S., & Teh, K. C. (2017). Adaptive transmission for cooperative NOMA system with buffer-aided relaying. IEEE Communications Letters,21(4), 937–940.

    Google Scholar 

  74. Men, J., & Ge, J. (2015). Non-orthogonal multiple access for multiple-antenna relaying networks. IEEE Communications Letters,19, 1686–1689.

    Google Scholar 

  75. Lin, F., Huang, H., Luo, T., & Yue, G. (2007). Impact of relay location to SER performance with different power allocation methods in cooperative system. In International conference on communications, circuits and systems, 2007. ICCCAS 2007 (pp. 133–137).

  76. Liu, Y., Pan, G., Zhang, H., & Song, M. (2016). Hybrid decode-forward & amplify-forward relaying with non-orthogonal multiple access. IEEE Access,4, 4912–4921.

    Google Scholar 

  77. Zhang, D., Liu, Y., Ding, Z., Zhou, Z., Nallanathan, A., & Sato, T. (2017). Performance analysis of non-regenerative massive-MIMO-NOMA relay systems for 5G. IEEE Transactions on Communications,65(11), 4777–4790.

    Google Scholar 

  78. Kim, J.-B., & Lee, I.-H. (2015). Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Communications Letters,19, 2037–2040.

    Google Scholar 

  79. Liang, X., Wu, Y., Ng, D. W. K., Zuo, Y., Jin, S., & Zhu, H. (2017). Outage performance for cooperative NOMA transmission with an AF relay. IEEE Communications Letters,21(11), 2428–2431.

    Google Scholar 

  80. Duan, W., Wen, M., Xiong, Z., & Lee, M. H. (2017). Two-stage power allocation for dual-hop relaying systems with non-orthogonal multiple access. IEEE Access,5, 2254–2261.

    Google Scholar 

  81. Liu, X., Wang, X., & Liu, Y. (2017). Power allocation and performance analysis of the collaborative NOMA assisted relaying systems in 5G. China Communications,14, 50–60.

    Google Scholar 

  82. Xue, C., Zhang, Q., Li, Q., & Qin, J. (2017). Joint power allocation and relay beamforming in non-orthogonal multiple access amplify-and-forward relay networks. IEEE Transactions on Vehicular Technology,66(8), 7558–7562.

    Google Scholar 

  83. Zhang, S., Di, B., Song, L., & Li, Y. (2017). Sub-channel and power allocation for non-orthogonal multiple access relay networks with amplify- and-forward protocol. IEEE Transactions on Wireless Communications,16, 2249–2261.

    Google Scholar 

  84. Li, X., Li, C., & Jin, Y. (2017). Joint subcarrier pairing and power allocation for cooperative non-orthogonal multiple access. IEEE Transactions on Vehicular Technology,66(11), 10577–10582.

    Google Scholar 

  85. Liu, G., Chen, X., Ding, Z., Ma, Z., & Yu, F. R. (2018). Hybrid half-duplex/full-duplex cooperative non-orthogonal multiple access with transmit power adaptation. IEEE Transactions on Wireless Communications,17, 506–519.

    Google Scholar 

  86. Gau, R.-H., Chiu, H.-T., Liao, C.-H., & Wu, C.-L. (2018). Optimal power control for NOMA wireless networks with relays. IEEE Wireless Communications Letters,7, 22–25.

    Google Scholar 

  87. Kim, J.-B., & Kim, D. (2010). Exact and closed-form outage probability of opportunistic decode-and-forward relaying with unequal-power interferers. IEEE Transactions on Wireless Communications,9, 3601–3606.

    Google Scholar 

  88. Kim, J. B., Song, M. S., & Lee, I. H. (2016). Achievable rate of best relay selection for non-orthogonal multiple access-based cooperative relaying systems. In 2016 international conference on information and communication technology convergence (ICTC) (pp. 960–962).

  89. Lee, S., Da Costa, D. B., Vien, Q.-T., Duong, T. Q., & de Sousa Jr, R. T. (2016). Non-orthogonal multiple access schemes with partial relay selection. IET Communications,11, 846–854.

    Google Scholar 

  90. Ding, Z., Dai, H., & Poor, H. V. (2016). Relay selection for cooperative NOMA. IEEE Wireless Communications Letters,5, 416–419.

    Google Scholar 

  91. Yang, Z., Ding, Z., Wu, Y., & Fan, P. (2017). Novel relay selection strategies for cooperative NOMA. IEEE Transactions on Vehicular Technology,66(11), 10114–10123.

    Google Scholar 

  92. Xu, P., Yang, Z., Ding, Z., & Zhang, Z. (2018). Optimal relay selection schemes for cooperative NOMA. IEEE Transactions on Vehicular Technology.

  93. Zhao, J., Ding, Z., Fan, P., Yang, Z., & Karagiannidis, G. K. (2018). Dual relay selection for cooperative NOMA with distributed space time coding. IEEE Access,6, 20440–20450.

    Google Scholar 

  94. Deng, D., Fan, L., Lei, X., Tan, W., & Xie, D. (2017). Joint user and relay selection for cooperative NOMA networks. IEEE Access,5, 20220–20227.

    Google Scholar 

  95. Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE,97, 894–914.

    Google Scholar 

  96. Liang, Y.-C., Chen, K.-C., Li, G. Y., & Mahonen, P. (2011). Cognitive radio networking and communications: An overview. IEEE Transactions on Vehicular Technology,60, 3386–3407.

    Google Scholar 

  97. Lv, L., Chen, J., Ni, Q., Ding, Z., & Jiang, H. (2018). Cognitive non-orthogonal multiple access with cooperative relaying: A new wireless frontier for 5G spectrum sharing. IEEE Communications Magazine,56, 188–195.

    Google Scholar 

  98. Lv, L., Chen, J., & Ni, Q. (2016). Cooperative non-orthogonal multiple access in cognitive radio. IEEE Communications Letters,20, 2059–2062.

    Google Scholar 

  99. Lv, L., Ni, Q., Ding, Z., & Chen, J. (2016). Application of non-orthogonal multiple access in cooperative spectrum-sharing networks over Nakagami-m fading channels. IEEE Transactions on Vehicular Technology,66(6), 5506–5511.

    Google Scholar 

  100. Chen, B., Chen, Y., Chen, Y., Cao, Y., Zhao, N., & Ding, Z. (2018). A novel spectrum sharing scheme assisted by secondary NOMA relay. IEEE Wireless Communications Letters.

  101. Lv, L., Chen, J., Ni, Q., & Ding, Z. (2017). Design of cooperative non-orthogonal multicast cognitive multiple access for 5G systems: User scheduling and performance analysis. IEEE Transactions on Communications,65, 2641–2656.

    Google Scholar 

  102. Sun, Y., Ng, D. W. K., & Schober, R. (2017). Resource allocation for MC-NOMA systems with cognitive relaying. In 2017 IEEE Globecom workshops (GC Wkshps) (pp. 1–7).

  103. Kader, F., & Shin, S. Y. (2016). Cooperative spectrum sharing with space time block coding and non-orthogonal multiple access. In 2016 eighth international conference on ubiquitous and future networks (ICUFN) (pp. 490–494).

  104. Li, N., Xiao, M., & Rasmussen, L. K. (2018). Optimized cooperative multiple access in industrial cognitive networks. IEEE Transactions on Industrial Informatics,14, 2666–2676.

    Google Scholar 

  105. Liu, G., Yu, F. R., Ji, H., & Leung, V. C. M. (2015). In-band full-duplex relaying: A survey, research issues and challenges. IEEE Communication Surveys & Tutorials. https://doi.org/10.1109/comst.2015.2394324.

    Article  Google Scholar 

  106. Sabharwal, A., Schniter, P., Guo, D., Bliss, D. W., Rangarajan, S., & Wichman, R. (2014). In-band full-duplex wireless: Challenges and opportunities. IEEE Journal on Selected Areas in Communications,32, 1637–1652.

    Google Scholar 

  107. Zhang, Z., Ma, Z., Xiao, M., Ding, Z., & Fan, P. (2016). Full-duplex device-to-device aided cooperative non-orthogonal multiple access. IEEE Transactions on Vehicular Technology,66(5), 4467–4471.

    Google Scholar 

  108. Liu, X., & Wang, X. (2016). Outage probability and capacity analysis of the collaborative NOMA assisted relaying system in 5G. In 2016 IEEE/CIC international conference on communications in China (ICCC) (pp. 1–5).

  109. Zhang, L., Liu, J., Xiao, M., Wu, G., Liang, Y.-C., & Li, S. (2017). Performance analysis and optimization in downlink NOMA systems with cooperative full-duplex relaying. IEEE Journal on Selected Areas in Communications,35(10), 2398–2412.

    Google Scholar 

  110. Yue, X., Liu, Y., Kang, S., Nallanathan, A., & Ding, Z. (2017). Exploiting full/half-duplex user relaying in NOMA systems. IEEE Transactions on Communications,66(2), 560–575.

    Google Scholar 

  111. Zhong, C., & Zhang, Z. (2016). Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Communications Letters,20, 2478–2481.

    Google Scholar 

  112. Mobini, Z., Mohammadi, M., Suraweera, H. A., & Ding, Z. (2017). Full-duplex multi-antenna relay assisted cooperative non-orthogonal multiple access. In 2017 IEEE global communications conference (GLOBECOM). arXiv preprint arXiv:1708.03919.

  113. Yue, X., Liu, Y., Kang, S., Nallanathan, A., & Ding, Z. (2018). Spatially random relay selection for full/half-duplex cooperative NOMA networks. IEEE Transactions on Communications.

  114. Jiang, D., Xu, Z., Li, W., & Chen, Z. (2015). Network coding-based energy-efficient multicast routing algorithm for multi-hop wireless networks. Journal of Systems and Software,104, 152–165.

    Google Scholar 

  115. Jiang, D., Xu, Z., Li, W., Yao, C., Lv, Z., & Li, T. (2016). An energy-efficient multicast algorithm with maximum network throughput in multi-hop wireless networks. Journal of communications and networks,18, 713–724.

    Google Scholar 

  116. Jiang, D., Zhang, P., Lv, Z., & Song, H. (2016). Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet of Things Journal,3, 1437–1447.

    Google Scholar 

  117. Jiang, D., Li, W., & Lv, H. (2017). An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing,220, 160–169.

    Google Scholar 

  118. Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys & Tutorials,17, 757–789.

    Google Scholar 

  119. Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications,12, 1989–2001.

    Google Scholar 

  120. Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications,34, 938–953.

    Google Scholar 

  121. Do, N. T., da Costa, D. B., Duong, T. Q., & An, B. (2016). A BNBF user selection scheme for NOMA-based cooperative relaying systems with SWIPT. IEEE Communications Letters,21(3), 664–667.

    Google Scholar 

  122. Yang, Z., Ding, Z., Fan, P., & Al-Dhahir, N. (2017). The impact of power allocation on cooperative non-orthogonal multiple access networks with SWIPT. IEEE Transactions on Wireless Communications,16(7), 4332–4343.

    Google Scholar 

  123. Kader, M. F., Shahab, M. B., & Shin, S. Y. (2017). Cooperative spectrum sharing with energy harvesting best secondary user selection and non-orthogonal multiple access. In 2017 international conference on computing, networking and communications (ICNC) (pp. 46–51).

  124. Sun, R., Wang, Y., Wang, X., & Zhang, Y. (2016). Transceiver design for cooperative non-orthogonal multiple access systems with wireless energy transfer. IET Communications,10, 1947–1955.

    Google Scholar 

  125. Ashraf, M., Shahid, A., Jang, J. W., & Lee, K.-G. (2017). Energy harvesting non-orthogonal multiple access system with multi-antenna relay and base station. IEEE Access,5, 17660–17670.

    Google Scholar 

  126. Han, W., Ge, J., & Men, J. (2016). Performance analysis for NOMA energy harvesting relaying networks with transmit antenna selection and maximal-ratio combining over Nakagami-m fading. IET Communications,10, 2687–2693.

    Google Scholar 

  127. Do, T. N., da Costa, D. B., Duong, T. Q., & An, B. (2018). Improving the performance of cell-edge users in MISO-NOMA systems using TAS and SWIPT-based cooperative transmissions. IEEE Transactions on Green Communications and Networking,2, 49–62.

    Google Scholar 

  128. Alsaba, Y., Leow, C. Y., & Abdul Rahim, S. K. (2018). Full-duplex cooperative non-orthogonal multiple access with beamforming and energy harvesting. IEEE Access,6, 19726–19738.

    Google Scholar 

  129. Zhang, Y., Wang, H.-M., Yang, Q., & Ding, Z. (2016). Secrecy sum rate maximization in non-orthogonal multiple access. IEEE Communications Letters,20, 930–933.

    Google Scholar 

  130. Liu, Y., Qin, Z., Elkashlan, M., Gao, Y., & Hanzo, L. (2017). Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks. IEEE Transactions on Wireless Communications,16, 1656–1672.

    Google Scholar 

  131. Chen, J., Yang, L., & Alouini, M.-S. (2018). Physical layer security for cooperative NOMA Systems. IEEE Transactions on Vehicular Technology,67, 4645–4649.

    Google Scholar 

  132. Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE,102, 366–385.

    Google Scholar 

  133. Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access,1, 335–349.

    Google Scholar 

  134. Zhang, Z., Ma, Z., Xiao, Y., Xiao, M., Karagiannidis, G. K., & Fan, P. (2017). Non-orthogonal multiple access for cooperative multicast millimeter wave wireless networks. IEEE Journal on Selected Areas in Communications,35, 1794–1808.

    Google Scholar 

  135. Nonaka, N., Benjebbour, A., & Higuchi, K. (2014). System-level throughput of NOMA using intra-beam superposition coding and SIC in MIMO downlink when channel estimation error exists. In 2014 IEEE international conference on communication systems (ICCS) (pp. 202–206).

  136. Jiang, D., Huo, L., Lv, Z., Song, H., & Qin, W. (2018). A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Transactions on Intelligent Transportation Systems,99, 1–15.

    Google Scholar 

  137. Xu, B., Chen, Y., Carrión, J. R., & Zhang, T. (2017). Resource allocation in energy-cooperation enabled two-tier NOMA HetNets towards green 5G. IEEE Journal on Selected Areas in Communications,35(12), 2758–2770.

    Google Scholar 

  138. Liu, C.-H., & Liang, D.-C. (2017). Heterogeneous networks with power-domain NOMA: Coverage, throughput and power allocation analysis. arXiv preprint arXiv:1708.03065.

  139. Xu, Y., Sun, H., Hu, R. Q., & Qian, Y. (2015). Cooperative non-orthogonal multiple access in heterogeneous networks. In 2015 IEEE global communications conference (GLOBECOM) (pp. 1–6).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamarul Ariffin Noordin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liaqat, M., Noordin, K.A., Abdul Latef, T. et al. Power-domain non orthogonal multiple access (PD-NOMA) in cooperative networks: an overview. Wireless Netw 26, 181–203 (2020). https://doi.org/10.1007/s11276-018-1807-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1807-z

Keywords

Navigation