Skip to main content

Advertisement

Log in

Efficient cooperative ARQ protocols based on relay selection in underwater acoustic communication sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The characteristics of the underwater acoustic communication such as large propagation delay, high bit error rate and half-duplex, bring challenges to traditional automatic repeat request (ARQ) schemes. In this paper, we propose cooperative ARQ protocols based on relay selection in wireless sensor networks. These protocols use cooperative relays that provide an alternative path along a specific source-to-destination route. This alternative path has higher channel quality than that of the direct source–destination path. The main advantage of our methods is that we do not need to be aware of the relays locations. In fact, the relays will be organized by creating a time table at the destination. Furthermore, we evaluate the proposed schemes by comparing them with conventional stop and wait (S&W) ARQ and some other works in terms of throughput efficiency. Analytical and computer simulation results show that the proposed cooperative retransmission protocols can significantly improve the throughput even in a network with a few cooperative relay nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.

    Article  Google Scholar 

  2. Ghoreyshi, S. M., Shahrabi, A., & Boutaleb, T. (2017). Void-handling techniques for routing protocols in underwater sensor networks: Survey and challenges. IEEE Communications Surveys and Tutorials, 19(2), 800–827.

    Article  Google Scholar 

  3. Amjad, M., Sharif, M., Khalil Afzal, M., & Won Kim, S. (2016). TinyOS-new trends, comparative views, and supported sensing applications: A review. IEEE Sensors Journal, 16(9), 2865–2889.

    Article  Google Scholar 

  4. Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192–219.

    Article  Google Scholar 

  5. Amjad, M., Rehmani, M. H., & Mao, S. (2018). Wireless multimedia cognitive radio networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 20(2), 1056–1103.

    Article  Google Scholar 

  6. Pramod, H. B., & Kumar, R. (2016). Multilayered energy harvesting and aggregation in underwater sensor acoustic networks for performance enhancement. In International conference on emerging technological trends (ICETT) (pp. 1–4). IEEE.

  7. Erdem, H. E., & Cagri Gungor, V. (2017). Lifetime analysis of energy harvesting underwater wireless sensor nodes. In 2017 25th signal processing and communications applications conference (SIU) (pp. 1–4). IEEE.

  8. Ghaznavi, M., & Jamshidi, A. (2015). A reliable spectrum sensing method in the presence of malicious sensors in distributed cognitive radio network. IEEE Sensors Journal, 15(3), 1810–1816.

    Google Scholar 

  9. Ghaznavi, M., & Jamshidi, A. (2013). Efficient method for reducing the average control bits in a distributed cooperative sensing in cognitive radio system. IET Communications, 7(9), 867–874.

    Article  Google Scholar 

  10. Cui, J.-H., Kong, J., Gerla, M., & Zhou, S. (2006). The challenges of building mobile underwater wireless networks for aquatic applications. Ieee Network, 20(3), 12–18.

    Article  Google Scholar 

  11. Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Elseviers Journal of Ad Hoc Networks, 3(3), 257–279.

    Article  Google Scholar 

  12. Heidemann, J., Ye, W., Wills, J., Syed, A., & Li, Y. (2006). Research challenges and applications for underwater sensor networking. In Proceedings of IEEE WCNC (pp. 228–235).

  13. Stojanovic, M. (2005). Optimization of a data link protocol for an underwater acoustic channel. In Europe Oceans 2005 (Vol. 1, pp. 68–73). IEEE.

  14. Tomasi, B., et al. (2015). Cross-layer analysis via Markov models of incremental redundancy hybrid ARQ over underwater acoustic channels. Ad Hoc Networks, 34, 62–74.

    Article  Google Scholar 

  15. Tacca, M., Monti, P., & Fumagalli, A. (2007). Cooperative and reliable ARQ protocols for energy harvesting wireless sensor nodes. IEEE Transactions on Wireless Communications, 6(7), 2519–2529.

    Article  Google Scholar 

  16. Jamshidi, A. (2011). Direct sequence spread spectrum point-to-point communication scheme in underwater acoustic sparse channels. IET Communications, 5(4), 456–466.

    Article  MATH  MathSciNet  Google Scholar 

  17. Azad, S., Casari, P., Guerra, F., & Zorzi, M. (2011). On ARQ strategies over random access protocols in underwater acoustic networks. In OCEANS 2011 IEEE-Spain (pp. 1–7). IEEE.

  18. Kwatra, P. (2013). ARQ protocol studies in underwater communication networks. In 2013 international conference on signal processing and communication (ICSC) (pp. 121–126). IEEE.

  19. Azad, S., Casari, P., & Zorzi, M. (2013). The underwater selective repeat error control protocol for multiuser acoustic networks: Design and parameter optimization. IEEE Transactions on Wireless Communications, 12(10), 4866–4877.

    Article  Google Scholar 

  20. Chitre, M., & Soh, W.-S. (2015). Reliable point-to-point underwater acoustic data transfer: To juggle or not to juggle? IEEE Journal of Oceanic Engineering, 40(1), 93–103.

    Article  Google Scholar 

  21. Elyas Babiker, A., Nordin, M., & Zakaria, B. (2011). Energy efficiency analysis of error correction techniques in underwater wireless sensor networks. Journal of Engineering Science and Technology, 6, 17–28.

    Google Scholar 

  22. Hara, S., Ogino, A., Okada, M., & Morinaga, N. (1996). Throughput performance of SAW-ARQ protocol with adaptive packet length in mobile packet data transmission. IEEE Transactions on Vehicular Technology, 45, 561–569.

    Article  Google Scholar 

  23. Annamalai, A., & Bhargava, V. (1998). Efficient ARQ error control strategies with adaptive packet length for mobile radio networks. In Proceedings of IEEE international conference on universal personal communications, ICUPC98 (Vol. 2, pp. 1247–1251).

  24. Tan, H. P., Seah, W. K. G., & Doyle, L. (2007). A multi-hop ARQ protocol for underwater acoustic networks. In Proceedings of IEEE Oceans Europe (pp. 1–6).

  25. Lee, J. W., Kim, J. P., Lee, J. H., Jang, Y. S., Dho, K. C., Son, K., & Cho, H. S. (2008). An improved ARQ scheme in underwater acoustic sensor networks. In Proceedings of MTS/IEEE Oceans08.

  26. Lee, J. W., Cheon, J. Y., & Cho, H. S. (2010). A cooperative ARQ scheme in underwater acoustic sensor networks. In Proceedings of IEEE Oceans 2010.

  27. Stojanovic, M. (2007). On the relationship between capacity and distance in an underwater acoustic communication channel. ACM SIGMOBILE Mobile Computing and Communications Review, 11(4), 34–43.

    Article  Google Scholar 

  28. Lee, J. W., Cheon, J. Y., & Cho, H. S. (2011). A cooperative ARQ scheme for multi-hop underwater acoustic sensor networks. In Proceedings of IEEE Oceans 2011.

  29. Mo, H., Mingir, A. C., Alhumyani, H., Albayram, Y., & Cui, J.-H. (2012). UW-HARQ: an underwater hybrid ARQ scheme: design, implementation and initial test. In Proceedings of IEEE OCEANS.

  30. Ghosh, A., Lee, J., Cho, H. (2013). Throughput and energy efficiency of a cooperative hybrid ARQ protocol for underwater acoustic sensor networks. In: SENSORS 2013.

  31. Jianghua, Y., Chen, H., Xie, L., & Hong, J. (2014). Performance analysis of hybrid ARQ schemes in underwater acoustic networks. In Proceedings of IEEE OCEANS (pp. 1–6).

  32. Zhuang, H., Tan, H.-P., Valera, A., & Bai, Z. (2010). Opportunistic ARQ with bidirectional overhearing for reliable multihop underwater networking. In OCEANS 2010 IEEE-Sydney (pp. 1–6). IEEE.

  33. Zhang, Y., Chen, Y., Zhou, S., Xu, X., Shen, X., & Wang, H. (2016). Dynamic node cooperation in an underwater data collection network. IEEE Sensors Journal, 16(11), 4127–4136.

    Article  Google Scholar 

  34. Lin, A., Chen, H., & Xie, L. (2015). Performance analysis of ARQ protocols in multiuser underwater acoustic networks. In OCEANS 2015-MTS/IEEE Washington (pp. 1–6). IEEE.

  35. Zhou, Z., Mo, H., Zhu, Y., Peng, Z., Huang, J., & Cui, J.-H. (2012). Fountain code based adaptive multi-hop reliable data transfer for underwater acoustic networks. In 2012 IEEE international conference on communications (ICC) (pp. 6396–6400). IEEE.

  36. Urick, R. J. (1983). Principles of underwater sound (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  37. Proakis, J. G. (2006). Digital communications (5th ed.). New York: McGraw-Hill.

    MATH  Google Scholar 

  38. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and stochastic processes. New York: Tata McGraw-Hill Education.

    Google Scholar 

  39. Petrioli, C., Petroccia, R., Potter, J. R., & Spaccini, D. (2015). The SUNSET framework for simulation, emulation and at-sea testing of underwater wireless sensor networks. Ad Hoc Networks, 34, 224–238.

    Article  Google Scholar 

  40. Petrioli, C., Petroccia, R. (2012). SUNSET: Simulation, emulation and real-life testing of underwater wireless sensor networks. In Proceedings of IEEE UComms (pp. 12–14).

  41. Das, A. P. (2016). Simulation tools for underwater sensor networks: A survey. Network Protocols and Algorithms, 8(4), 41–55.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Jamshidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidi, A. Efficient cooperative ARQ protocols based on relay selection in underwater acoustic communication sensor networks. Wireless Netw 25, 4815–4827 (2019). https://doi.org/10.1007/s11276-018-1773-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1773-5

Keywords

Navigation