Skip to main content
Log in

Models for wireless H.264 video-on-demand services using self-similarity and heavy-tails

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this work two video-on-demand (VoD) capacity models for H.264 video traces transmitted using 802.11g are proposed, one based on a self-similar traffic distribution and the other one based in the summation of a large number of Pareto distributed random variables. To ascertain the validity of using such modeling techniques a statistical analysis was performed where it was found that H.264 video traces exhibit self-similarity and heavy-tailed properties, as previous video formats that also use variable bit rate encoding. The models were evaluated against trace based simulations using ns-3 and results from hardware testbeds from other works. The model based on Pareto distributions gives a lower bound on a wide range of buffer sizes, while the model based on self-similarity provides a closer approximation to the user load when buffer size is high. The results show that the models can approximate the maximum user load for H.264 transmission on a local area VoD system and that they depend on the access point buffer size and the desired quality of service expressed as packet-loss probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim, H., Hou, J. C., Hu, C., & Ge, Y. (2007). Qos provisioning in ieee 802.11-compliant networks: Past, present, and future. Computer Networks, 51(8), 1922–1941.

    Article  MATH  Google Scholar 

  2. Reed, D., & Lansford, J. (2014). Wi-fi as a commercial service: New technology and policy implications. Telecommunications Policy, 38(8), 827–837.

    Article  Google Scholar 

  3. Garrett, M. W. & Willinger, W. (1994). Analysis, modeling and generation of self-similar vbr video traffic. In ACM SIGCOMM computer communication review (Vol. 24, pp. 269–280) ACM.

  4. Leland, W. E., Taqqu, M. S., Willinger, W., & Wilson, D. V. (1994). On the self-similar nature of ethernet traffic (extended version). Networking, IEEE/ACM Transactions on, 2(1), 1–15.

    Article  Google Scholar 

  5. Lazaris, A., & Koutsakis, P. (2010). Modeling multiplexed traffic from h. 264/avc videoconference streams. Computer Communications, 33(10), 1235–1242.

    Article  Google Scholar 

  6. Garrett, M. W., Willinger, W. (1994). Analysis, modeling and generation of self-similar VBR video traffic. In ACM SIGCOMM computer communication review (Vol. 24(4), pp. 269–280).

  7. Sahinoglu, Z., & Tekinay, S. (1999). On multimedia networks: Self-similar traffic and network performance. Communications Magazine, IEEE, 37(1), 48–52.

    Article  Google Scholar 

  8. Aguiar, E., Riker, A., Cerqueira, E., Abelm, A., Mu, M., Braun, T., et al. (2014). A real-time video quality estimator for emerging wireless multimedia systems. Wireless Networks, 20(7), 1759–1776.

    Article  Google Scholar 

  9. Gierłowski, K., Kostuch, A., Woźniak, J., & Nowicki, K. (2011). Testbed analysis of video and VoIP transmission performance in IEEE 802.11 b/g/n networks. Telecommunication Systems, 48(3–4), 247–260.

    Article  Google Scholar 

  10. Zaliapin, I., Kagan, Y. Y., & Schoenberg, F. P. (2005). Approximating the distribution of pareto sums. Pure and Applied Geophysics, 162(6–7), 1187–1228.

    Article  Google Scholar 

  11. Pinheiro, B. (2013). NS3.13 + Evalvid module by GERCOM. https://github.com/gercom/evalvid-ns3.

  12. Asmussen, S. (2003). Applied probability and queues. New York: Springer.

    MATH  Google Scholar 

  13. Rolski, T., Schmidli, H., Schmidt, V., & Teugels, J. (1999). Stochastic processes for insurance and finance. Wiley series in probability and statistics. Chichester: Wiley.

    Book  MATH  Google Scholar 

  14. Leon-Garcia, A. (2008). Probability, statistics, and random processes for electrical engineering. Upper Saddle River: Pearson/Prentice Hall.

    Google Scholar 

  15. Beran, J. (1994). Statistics for long-memory processes. Chapman & Hall/CRC monographs on statistics & applied probability. Abingdon: Taylor & Francis.

    Google Scholar 

  16. Park, K., & Willinger, W. (2000). Self-similar network traffic: An overview. In K. Park & W. Willinger (Eds.), Self-similar network traffic and performance evaluation (pp. 1–38). New York: John Wiley & Sons, Inc.

    Google Scholar 

  17. Duffield, N. G. & O’connell, N. (1995). Large deviations and overflow probabilities for the general single-server queue, with applications. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 118, pp. 363–374). Cambridge Univ Press.

  18. Ramirez-Velarde, R. V., & Rodriguez-Dagnino, R. M. (2010). From commodity computers to high-performance environments: Scalability analysis using self-similarity, large deviations and heavy-tails. Concurrency and Computation: Practice and Experience, 22(11), 1494–1515.

    Google Scholar 

  19. Henderson, T. R., Roy, S., Floyd, S., & Riley, G. F. (2006). Ns-3 project goals. In Proceeding from the 2006 workshop on Ns-2: The IP network simulator (Vol. 1(13)).

  20. Seeling, P., & Reisslein, M. (2012). Video transport evaluation with H.264 video traces. IEEE Communications Surveys and Tutorials, in print, 14(4), 1142–1165.

    Article  Google Scholar 

  21. Crovella, M. E., & Lipsky, L. (2000). Simulations with heavy-tailed workloads. Self-similar network traffic and performance evaluation, 3, 89–100.

    Article  Google Scholar 

  22. Klaue, J., Rathke, B., & Wolisz, A. (2003). Evalvid–A framework for video transmission and quality evaluation. Computer performance evaluation. modelling techniques and tools (pp. 255–272). Berlin: Springer.

    Book  Google Scholar 

  23. Saladino, D., Paganelli, A., & Casoni, M. (2013). A tool for multimedia quality assessment in NS3: QoE Monitor. Simulation Modelling Practice and Theory, 32, 30–41.

    Article  Google Scholar 

  24. Abraham, J. & Riley, G. (2012). Simulator agnostic ns-3 applications. In Proceedings of the 5th international ICST conference on simulation tools and techniques, SIMUTOOLS’12 (pp. 391–396).

  25. Kirichenko, L., Radivilova, T., & Deineko, Z. (2011). Comparative analysis for estimating of the hurst exponent for stationary and nonstationary time series. Information Technologies & Knowledge, 5(1), 371–388.

    Google Scholar 

  26. RClegg, R. G. (2006). A practical guide to measuring the Hurst parameter. In 21 st UK performance engineering workshop (Vol. 7(2), pp. 3–14).

  27. Lobo, A., Garca, R., Paeda, X. G., Melendi, D., & Cabrero, S. (2013). Modeling video on demand services taking into account statistical dependences in user behavior. Simulation Modelling Practice and Theory, 31, 96–115.

    Article  Google Scholar 

  28. Taqqu, M. S., Teverovsky, V., & Willinger, W. (1995). Estimators for long-range dependence: An empirical study. Fractals, 3(4), 785–798.

    Article  MATH  Google Scholar 

  29. Taqqu, M. S., & Teverovsky, V. (1997). Robustness of whittle-type estimators for time series with long-range dependence. Communications in statistics. Stochastic models, 13(4), 723–757.

    Article  MathSciNet  MATH  Google Scholar 

  30. Bardet, J.-M., Philippe, A., Oppenheim, G., Taqqu, M., Stoev, S., & Lang, G. (2003). Semi-parametric estimation of the long-range dependence parameter: A survey. In P. Doukhan, G. Oppenheim, & M. S. Taqqu (Eds.), Theory and applications of long-range dependence (pp. 557–577). Basel: Birkhäuser.

    Google Scholar 

  31. Abry, P., & Veitch, D. (1998). Wavelet analysis of long-range-dependent traffic. Information Theory, IEEE Transactions on, 44(1), 2–15.

    Article  MathSciNet  MATH  Google Scholar 

  32. Font, J. L., Inigo, P., Dominguez, M., Sevillano, J. L., & Amaya, C. (2011). Analysis of source code metrics from ns-2 and ns-3 network simulators. Simulation Modelling Practice and Theory, 19(5), 1330–1346.

    Article  Google Scholar 

  33. Karagiannis, T. Faloutsos, M., Riedi, R. H. (2002). Long-range dependence: now you see it, now you don’t!. In Global telecommunications conference, 2002. GLOBECOM’02. IEEE (Vol. 3, pp. 2165–2169).

  34. Rose, O. (1995). Statistical properties of MPEG video traffic and their impact on traffic modeling in ATM systems. In 20th conference on local computer networks, Proceedings (pp. 397–406).

  35. Xue, F. (2000). Performance analysis of a wavelet-based hurst parameter estimator for self-similar traffic. In: 2000 SCS Symposium on Performance Evaluation of Computer and Telecommunication Systems SPECTS2K.

  36. Reljin, I., Samčović, A., & Reljin, B. (2006). H. 264/AVC video compressed traces: Multifractal and fractal analysis. EURASIP Journal on Applied Signal Processing, 2006, 123.

    Google Scholar 

  37. Stallings, W. (2002). High-speed networks and internets: performance and quality of service. New Delhi: Pearson Education India.

    Google Scholar 

  38. Samoradnitsky, G. & Taqqu, M. S. (1994). Stable non-Gaussian random processes: stochastic models with infinite variance. (Vol. 1).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul Ramirez-Velarde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barba-Jimenez, C., Ramirez-Velarde, R. & Nolazco-Flores, J.A. Models for wireless H.264 video-on-demand services using self-similarity and heavy-tails. Wireless Netw 23, 2239–2252 (2017). https://doi.org/10.1007/s11276-016-1281-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1281-4

Keywords

Navigation