Skip to main content
Log in

Oblivious routing in wireless mesh networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

As new network applications have arisen rapidly in recent years, it is becoming more difficult to predict the exact traffic pattern of a network. In consequence, a routing scheme based on a single traffic demand matrix often leads to a poor performance. Oblivious routing (Racke in Proceedings of the 43rd annual IEEE symposium on foundations of computer science 43–52, 2002) is a technique for tackling the traffic demand uncertainty problem. A routing scheme derived from this principle intends to achieve a predicable performance for a set of traffic matrixes. Oblivious routing can certainly be an effective tool to handle traffic demand uncertainty in a wireless mesh network (WMN). However, a WMN has an additional tool that a wireline network does not have: dynamic bandwidth allocation. A router in a WMN can dynamically assign bandwidth to its attached links. This capability has never been exploited previously in works on oblivious routing for a spatial time division multiple access (STDMA) based WMN. Another useful insight is that although it is impossible to know the exact traffic matrix, it is relatively easy to estimate the amount of the traffic routed through a link when the routing scheme is given. Based on these two insights, we propose a new oblivious routing framework for STDMA WMNs. Both analytical models and simulation results are presented in this paper to prove that the performance—in terms of throughput, queue lengths, and fairness—of the proposed scheme can achieve significant gains over conventional oblivious routing schemes for STDMA based WMNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Racke, H. (2002). Minimizing congestion in general networks. In Proceedings of the 43rd annual IEEE symposium on foundations of computer science (pp. 43–52). IEEE.

  2. Azar, Y., Cohen, E., Fiat, A., Kaplan, H., & Racke, H. (2003). Optimal oblivious routing in polynomial time. In Proceedings of the thirty-fifth annual ACM symposium on theory of computing (pp. 383–388). ACM.

  3. Applegate, D., & Cohen, E. (2003). Making intra-domain routing robust to changing and uncertain traffic demands: Understanding fundamental tradeoffs. In Proceedings of the 2003 conference on applications, technologies, architectures, and protocols for computer communications (pp. 313–324). ACM.

  4. Pathak, P. H., & Dutta, R. (2011). A survey of network design problems and joint design approaches in wireless mesh networks. IEEE Communications Surveys and Tutorials, 13(3), 396–428.

    Article  Google Scholar 

  5. Allen, D. (1993). Hidden terminal problems in wireless lans. IEEE 802.11 Working Group Papers.

  6. Nelson, R., & Kleinrock, L. (1985). Spatial TDMA: A collision-free multihop channel access protocol. IEEE Transactions on Communications, 33(9), 934–944.

    Article  MathSciNet  Google Scholar 

  7. Lee, S. W., Lee, J., Zhu, C., & Taori, R. (2005). 802.11 TGS MAC enhancement proposal. IEEE, 802, 11-05.

    Google Scholar 

  8. Carello, G., Filippini, I., Gualandi, S., & Malucelli, F. (2007). Scheduling and routing in wireless multi-hop networks by column generation. Proceedings of INOC-distributed on CDRom.

  9. Capone, A., & Carello, G. (2006). Scheduling optimization in wireless mesh networks with power control and rate adaptation. In 3rd annual IEEE communications society on sensor and ad hoc communications and networks, SECON’06 2006 (Vol. 1, pp. 138–147). IEEE.

  10. Molle, C., Peix, F., & Rivano, H. (2008). An optimization framework for the joint routing and scheduling in wireless mesh networks. In IEEE 19th international symposium on personal, indoor and mobile radio communications, PIMRC 2008 (pp. 1–5) IEEE.

  11. Pathak, P. H., Gupta, D., & Dutta, R. (2008). Loner links aware routing and scheduling in wireless mesh networks. In 2nd international symposium on advanced networks and telecommunication systems, ANTS’08 (pp. 1–3). IEEE.

  12. Friderikos, V., & Papadaki, K. (2008). Interference aware routing for minimum frame length schedules in wireless mesh networks. EURASIP Journal on Wireless Communications and Networking, 2008, 817876.

  13. Li, D., Wang, B., & Jia, X. (2008). Topology control for throughput optimization in wireless mesh networks. In The 4th international conference on mobile ad-hoc and sensor networks, MSN 2008 (pp. 161–168). IEEE.

  14. Augusto, C. H. P., Carvalho, C. B., da Silva, M. W. R., & de Rezende, J. F. (2011). Reuse: A combined routing and link scheduling mechanism for wireless mesh networks. Computer Communications, 34(18), 2207–2216.

    Article  Google Scholar 

  15. Johansson, M., & Xiao, L. (2006). Cross-layer optimization of wireless networks using nonlinear column generation. IEEE Transactions on Wireless Communications, 5(2), 435–445.

    Article  Google Scholar 

  16. Kompella, S., Wieselthier, J. E., Ephremides, A., Sherali, H. D., & Nguyen, G. D. (2010). On optimal SINR-based scheduling in multihop wireless networks. IEEE/ACM Transactions on Networking (TON), 18(6), 1713–1724.

    Article  Google Scholar 

  17. Wang, W., Liu, X., & Krishnaswamy, D. (2009). Robust routing and scheduling in wireless mesh networks under dynamic traffic conditions. IEEE Transactions on Mobile Computing, 8(12), 1705–1717.

    Article  Google Scholar 

  18. Busch, Christoph, Kannan, Ravindran, & Vasilakos, Athanasios V. (2012). Approximating congestion + dilation in networks via” quality of routing&# x201d; games. IEEE Transactions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  19. Yen, Yun-Sheng, Chao, Han-Chieh, Chang, Ruay-Shiung, & Vasilakos, Athanasios. (2011). Flooding-limited and multi-constrained qos multicast routing based on the genetic algorithm for manets. Mathematical and Computer Modelling, 53(11), 2238–2250.

    Article  Google Scholar 

  20. Liu, Liang, Song, Yuning, Zhang, Haiyang, Ma, Huadong, & Vasilakos, Athanasios V. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.

    MathSciNet  Google Scholar 

  21. Vasilakos, Athanasios V., Li, Zhe, Simon, Gwendal, & You, Wei. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52, 1–10.

    Article  Google Scholar 

  22. Zeng, Yuanyuan, Xiang, Kai, Li, Deshi, & Vasilakos, Athanasios V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  23. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers. doi:10.1109/TC.2015.2417543.

  24. Wang, Xiaofei, Vasilakos, Athanasios V., Chen, Min, Liu, Yunhao, & Kwon, Ted Taekyoung. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20.

    Article  Google Scholar 

  25. Woungang, Isaac, Dhurandher, Sanjay Kumar, Anpalagan, Alagan, & Vasilakos, Athanasios V. (2013). Routing in opportunistic networks. New York: Springer.

    Book  MATH  Google Scholar 

  26. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012). Codepipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In Proceedings IEEE of INFOCOM (pp. 100–108). IEEE.

  27. Li, Peng, Guo, Song, Yu, Shui, & Vasilakos, Athanasios V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.

    Article  Google Scholar 

  28. Dvir, Amit, & Vasilakos, Athanasios V. (2011). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.

    Google Scholar 

  29. Spyropoulos, Thrasyvoulos, Rais, Rao Naveed, Turletti, Thierry, Obraczka, Katia, & Vasilakos, Athanasios. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  30. Vasilakos, Athanasios V., Zhang, Yan, & Spyropoulos, Thrasyvoulos. (2011). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.

    Google Scholar 

  31. Liu, Yuhua, Xiong, Naixue, Zhao, Yongfeng, Vasilakos, Athanasios V., Gao, Jingju, & Jia, Yongcan. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.

    Article  Google Scholar 

  32. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In IEEE 10th international conference on Mobile ad-hoc and sensor systems (MASS) (pp. 182–190). IEEE.

  33. Zhang, Xin Ming, Zhang, Yue, Yan, Fan, & Vasilakos, Athanasios V. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.

    Article  Google Scholar 

  34. Youssef, Moustafa, Ibrahim, Mohammad, Abdelatif, Mohamed, Chen, Lin, & Vasilakos, Athanasios V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  35. Duarte, Pedro B. F., Fadlullah, Zubair Md, Vasilakos, Athanasios V., & Kato, Nei. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.

    Article  Google Scholar 

  36. Holte, Y. L. J. H. R. (2006). Optimal traffic-oblivious energy-aware routing for multihop wireless networks. In 25th IEEE international conference on computer communications (INFOCOM) (pp. 1–12).

  37. Kashyap, A., Sengupta, S., Bhatia, R., & Kodialam, M. (2007). Two-phase routing, scheduling and power control for wireless mesh networks with variable traffic. In Joint international conference on measurement and modeling of computer systems: Proceedings of the 2007 ACM SIGMETRICS international conference on measurement and modeling of computer systems (Vol. 12, pp. 85–96).

  38. Wellons, J., & Xue, Y. (2008). Oblivious routing for wireless mesh networks. In IEEE International Conference on Communications, ICC’08 (pp. 2969–2973). IEEE.

  39. Wellons, J., & Xue, Y. (2014). The robust joint solution for channel assignment and routing for wireless mesh networks with time partitioning. Ad Hoc Networks, 13, 210–221.

    Article  Google Scholar 

  40. Ni, J., Tan, B., & Srikant, R. (2012). Q-CSMA: Queue-length-based CSMA/CA algorithms for achieving maximum throughput and low delay in wireless networks. IEEE/ACM Transactions on Networking, 20(3), 825–836.

    Article  Google Scholar 

  41. Ji, B., Joo, C., & Shroff, N. B. (2013). Throughput-optimal scheduling in multihop wireless networks without per-flow information. IEEE/ACM Transactions on Networking, 21(2), 634–647.

    Article  Google Scholar 

  42. Chen, W., & Lea, C. (2013). A node-based time slot assignment algorithm for STDMA wireless mesh networks. IEEE Transactions on Vehicular Technology, 62(1), 272–283.

  43. Yee, J., & Pezeshki-Esfahani, H. (2002). Understanding wireless LAN performance trade-offs. Communication Systems Design, 11, 32–35.

    Google Scholar 

  44. Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Computer networks, 47(4), 445–487.

    Article  MATH  Google Scholar 

  45. Jain, R., Durresi, A., & Babic, G. (1999). Throughput fairness index: An explanation. Technical report, Department of CIS, The Ohio State University.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Chen.

Appendices

Appendix 1: The derivation of property 1

Property 1

\(\left( \sum _{\left\{ e \mid e \in E_p^S \right\} } {\sum _{\left\{ f \mid f \in F \right\} }y_{f,e}^Sh_f}/{c_e^S}\right) -\theta ^S\le 0\) for every \(H \in W'\) if and only if there exists \(\left\{ w_f^{S,p} \mid S\in N,p\in S,f\in F \right\}\), \(\left\{ \pi _f^{S,p}\mid S\in N,p\in S, f\in F\right\}\), \(\left\{ \phi _{T,v}^{S,p} \mid S,T\in N,p \in S, v \in T \right\}\), and \(\left\{ \sigma _{f,v}^{S,p} \mid S\in N, p\in S, f\in F,v\in V\right\}\), with the following conditions:

$$\sum _{\left\{ f \mid f \in F \right\} }\left( w_f^{S,p}b_f-\pi _f^{S,p}d_f\right) \le 0, \quad \forall S\in N, p\in S, f\in F;$$
(16a)
$$\sum _{\left\{ v \mid v \in T \right\} } \phi _{T,v}^{S,p}-\theta ^S\le 0, \quad \forall S,T\in N, p\in S;$$
(16b)
$$\sum _{\left\{ e \mid e \in E_p^S \right\} }\frac{y_{f,e}^S}{c_e^S}-\sigma _{f,src_f}^{S,p}-w_f^{S,p}+\pi _f^{S,p}\le 0,\quad \forall S\in N, p\in S, f\in F;$$
(16c)
$$\sigma _{f,v}^{S,p}-\sigma _{f,u}^{S,p}-\phi _{f,v}^{S,p}/c_e^T\le 0, \quad \forall S,T\in N, p\in S,f\in F,tx_e=v,rx_e=u$$
(16d)

Proof

The proof is similar to the one in [3]. For a given \(\left\{ y_{f,e}^S \mid f\in F, e\in E \right\}\), and any node \(p\in S\), the following LP cauculates the maximum value of \(\sum _{\left\{ e,f \mid e \in E_p^S, f\in F \right\} } {y_{f,e}^Sh_f}/{c_e^S}-\theta _S\).

$${\text {max}}\sum \limits _{\left\{ e,f\mid e \in E_p^S, f\in F \right\} } {y_{f,e}^Sh_f}/{c_e^S}-\theta _S$$
(17a)
$${\text {s.t.}}\sum \limits _{\left\{ (S,e) \in NT_{f,p} \right\} } z_{f,e}^S-\sum \limits _{\left\{ (S,e) \in NR_{f,p} \right\} } z_{f,e}^S = 0\quad p \ne src_f,dst_f$$
(17b)
$$\sum \limits _{\left\{ (S,e) \in NT_{f,p} \right\} } z_{f,e}^S-\sum \limits _{\left\{ (S,e) \in NR_{f,p} \right\} } z_{f,e}^S = h_f \quad p=src_f$$
(17c)
$$\sum \limits _{\left\{ e,f \mid e\in E_p^S, f \in F \right\} }{y_{f,e}^S}/{c_e^S}\le \epsilon ^S$$
(17d)
$$\sum \limits _{\left\{ S \mid S \in N \right\} } \epsilon ^S=1$$
(17e)
$$d_f\le h_f \le b_f, z_{f,e}^S, \epsilon ^S, h_f \ge 0$$
(17f)

Here, \(\left\{ \epsilon ^S\mid S \in N \right\}\) and \(\left\{ z_{f,e}^S \mid S\in N,e\in E,f\in F\right\}\) is the optimal slot assignment and routing scheme for traffic demand \(\left\{ h_f\mid f\in F\right\}\). We then take the dual of (17), and get:

$${\text {max}}\sum \limits _{\left\{ f \mid f\in F\right\} } \left( w_f^{S,p}b_f-\pi _f^{S,p}d_f\right)$$
(18a)
$${\text {s.t.}}(14\text{a}{-}14\text{d})$$
(18b)

According to duality theory, \(\sum _{\left\{ e \in E_p^S, f\in F \right\} } {y_{f,e}^Sh_f}/{c_e^S}-\theta _S \le 0\) if and only if (18a)\(\le 0\). \(\square\)

Appendix 2: The derivation of property 2

Property 2

The derived oblivious ratio \((or^\star)\) of the proposed node based scheme is upper bounded by the oblivious ratio of the link based scheme.

Proof

To prove the property, we first show the formulation of the link based scheme. Let L be the set of link patterns, and \(\tilde{c}_e^Q\) be the average transmission rate of link e when link pattern Q is activated. Note that, \(\tilde{c}_e^Q\) can also be derived from (1) and (2). Similar to (8), the oblivious ratio for the link based scheme (\(or_{link}^*\)) can be derived from the following LP:

$${\text {min}}\sum \limits _{\left\{ Q \mid Q \in L \right\} } \rho ^Q$$
(19a)
$${\text {s.t.}}\sum \limits _{\left\{ e \mid e\in ET_p \right\} } x_{f,e}-\sum \limits _{\left\{ e \mid e\in ER_p \right\} } x_{f,e} = 0 \quad \forall p \ne src_f,dst_f$$
(19b)
$$\sum \limits _{\left\{ e \mid e\in ET_p \right\} } x_{f,e}-\sum \limits _{\left\{ e \mid e\in ER_p\right\} } x_{f,e} = 1\quad \forall p=src_f$$
(19c)
$$\sum \limits _{\left\{ f \mid f \in F \right\} } \omega _f^eb_f-\pi _f^ed_f \le 0$$
(19d)
$$\sum \limits _{\left\{ l \mid l \in Q \right\} } \phi _l^e\tilde{c}_l^Q-\sum \limits _{\left\{ l \mid l \in Q \right\} }\rho ^Q\tilde{c}_l^Q \le 0$$
(19e)
$$x_{f,e}-\sigma _{f,src_f}^e-\omega _f^e+\pi _f^e \le 0$$
(19f)
$$\sigma _{f,v}^e-\sigma _{f,u}^e-\phi _l^e \le 0\quad e=(v,u)$$
(19g)
$$x_{f,e}, \rho ^Q, \omega _f^e, \pi _f^e, \phi _l^e \ge 0$$
(19h)

Hence the portion of traffic routed through link e in link pattern Q (denoted as \(\tilde{y}_{f,e}^Q\)) is \(\tilde{y}_{f,e}^Q=\tilde{c}_e^Q\rho ^Q/(\sum _{Q_1\in L}\tilde{c}_e^{Q_1}\rho ^{Q_1})\cdot x_{f,e}\), and \(\tilde{Y}=\left\{ \tilde{y}_{f,e}^Q\right\}\). Let \(\tilde{\omega }_{f}^{Q,e}=\omega _f^e\rho ^Q/(\sum _{Q_1\in L}\tilde{c}_e^{Q_1}\rho ^{Q_1})\) \(\tilde{\pi }_f^{Q,e}=\pi _f^{Q,e}\rho ^Q/(\sum _{Q_1\in L}\tilde{c}_e^{Q_1}\rho ^{Q_1})\) and \({\tilde{\phi }}_l^{Q,e}=\phi _l^e\rho ^Q/(\sum _{Q_1\in L}{\tilde{c}}_e^{Q_1}\rho ^{Q_1})\). It is obvious that by replacing \(\omega _f^e, \pi _f^e, \phi _l^e\) with \(\omega _f^{Q,e}, \pi _f^{Q,e}, \phi _l^{Q,e}\) (19d19d) can still be satisfied. This implies that a link-based scheme is a special case of a node-based scheme by restricting that each node in a node pattern be associated with only one link. Hence the oblivious ratio of a node-based scheme will never be worse than a link-based scheme. \(\square\)

Appendix 3: The derivation of (9)

To justify whether a new node pattern will improve the master problem or not, we first take the dual of (8):

$${\text {min}}\sum \limits _{\left\{ f \mid f \in F \right\} } \lambda _f^{src_f}$$
(20a)
$${\text {s.t.}}\sum \limits _{\left\{ T \mid T\in N, p\in S \right\} } \varpi _T^{S,p} \le 1$$
(20b)
$$\lambda _f^u-\lambda _f^v-{\eta _f^{S,p}}/{c_e^S}\le 0\quad e=(v,u)$$
(20c)
$$\sum \limits _{\left\{ f, e \mid f \in F, e\in E_v^T \right\} } {\delta _{f,T,e}^{S,p}}/{c_e^T}-\varpi _T^{S,p} \le 0$$
(20d)
$$\zeta ^{S,p}d_f \le \eta _f^{S,p}\le \zeta ^{S,p}b_f$$
(20e)
$$\sum \limits _{\left\{ e\in E_v^T \right\} }\delta _{f,T,e}^{S,p}-\sum \limits _{\left\{ e\in E_v^T\cap ER_v\right\} }\delta _{f,T,e}^{S,p}=0\quad v\ne src_f,dst_f$$
(20f)
$$\sum \limits _{\left\{ e\in E_v^T \right\} }\delta _{f,T,e}^{S,p}-\sum \limits _{\left\{ e\in E_v^T\cap ER_v\right\} }\delta _{f,T,e}^{S,p}=\lambda _f^v\quad v=src_f$$
(20g)
$$\varpi _T^{S,p}, \eta _f^{S,p}, \delta _{f,T,e}^{S,p}, \zeta ^{S,p}, \lambda _f^v \ge 0$$
(20h)

When a new node pattern is introduced, we first construct the following LP:

$${\text {min}}\sum \limits _{\left\{ T, p \mid T \in N, p \in S \right\} } \varpi _T^{S,p}$$
(21a)
$${\text {s.t.}}(20\text{c}{-}20\text{g})$$
(21b)
$$\varpi _T^{S,p}, \eta _f^{S,p}, \delta _{f,T,e}^{S,p}, \zeta ^{S,p} \ge 0$$
(21c)

Here \(\left\{ \lambda _f^u\right\}\) is derived from (20). As long as the optimal value of (21) is larger than 1, the new node pattern will violate the constraints in (20). According to the duality theory, by adding this node pattern into the master problem, the result of the master problem will be improved. \(rp^S=1-\min _{\left\{ T, p\mid T\in N, p\in S\right\} }\varpi _T^{S,p}\) is called the reduced cost of node pattern S.

Appendix 4: Proof the convergence of \(E\left( {\hat{\epsilon }}_e^S(H,x)\right)\)

Here we will prove that when M is large enough the long term average value of \({\hat{\epsilon }}_e^S(H,x)\) can be arbitrarily close to \(\epsilon _e^S(H)\) by probability. We first make the following assumptions:

  • Traffic arrivals can be modeled as a wide sense stationary process with finite mean and variance (this can be easily achieved by setting a limit to the maximum amount of instant traffic for each flow at its source node). Moreover, let \(R_f(\tau )\) be the auto-correlation function of traffic flow f, \(|R_f (\tau )|\le c_0\) for all \(\tau\), and \(\lim _{\tau \rightarrow \infty }R_f(\tau )=0\). Here, \(c_0\) is a constant;

  • Traffic arrivals of different flows are independent.

Let \({\hat{a}}_f(H,x)=(1-{1}/{M}){\hat{a}}_f(H,x-1)+a_f(H,x)/M\). \({\hat{a}}_f (H,x)\) can be interpreted as the estimated arrival of flow f at time x. The variance of \({\hat{a}}_f (H,x)\), denoted as \(V_f\), is:

$$\begin{aligned} V_f&=\left( \sum \limits _{i=0}^{x-1}(1-{1}/{M})^{2i}R_f(0) +\sum \limits _{k=0,i>k}^{x-1}2(1-{1}/{M})^{2(i-k)}R_f(k)\right) /M^2\nonumber \\&\quad \le {2c_0}\left( 1+\sum \limits _{k=1}^{x-1}(1-{1}/{M})^{3k+2}\right) /(2M-1) \end{aligned}$$
(22)

Here, \(\lim _{M\rightarrow \infty }V_f\rightarrow 0\). Denote \(g_{e}^S(H,x)\) as the amount of traffic arrives to link e from flow f in node pattern S at slot x. Also we can derive the expectation of \({\hat{a}}_{e}^S(H,x)\) as

$$E\left( {\hat{a}}_{e}^S(H,x)\right) =\sum \limits _{\left\{ f \right\} }\left( (1-{1}/{M})^xg_{f,e,0}^S+y_{f,e}^Sh_f\left( 1-(1-\frac{1}{M})^x\right) \right)$$

Here, \(g_{f,e,0}^S\) is the initial value of link e for flow f in node pattern S and \(\lim _{M\rightarrow \infty }E({\hat{a}}_e^S(H,x))\rightarrow \sum \limits _{\left\{ f \right\} }y_{f,e}^Sh_f\). To simplify the presentation, let \(a_e={{\hat{a}}_e^S(H,x)}/{c_e^S}\), \(\mu _e=E\left( {{\hat{a}}_e^S(H,x)}/{c_e^S}\right)\), and \(\delta =\delta _1+\delta _0\). Therefore, for any \(\delta _0\), e, there exists \(M\ge M_1>1\), \(|{\mu _e}/{\sum _{\left\{ e'\in E_p^S\right\} }\mu _{e'}}-\epsilon _e^S(H)|<\delta _0\). Denote \(z(x)={\hat{\epsilon }}_e^S(H,x)-{\mu _e}/{\sum _{\left\{ e'\in E_p^S \right\} }\mu _{e'}}\), \(|{\hat{\epsilon }}_e^S(H,x)-\epsilon _e^S(H)|\le \delta _0+|z(x)|\). Let \(u_1=a_e(\sum _{\left\{ e'\in E_p^S\right\} }\mu _{e'})-\mu _e(\sum _{\left\{ e'\in E_p^S\right\} }a_{e'})-\delta (\sum _{\left\{ e'\in E_p^S\right\} }a_{e'})(\sum _{\left\{ e''\in E_p^S\right\} }\mu _{e''})\) and \(u_2=-a_e(\sum _{\left\{ e'\in E_p^S\right\} }\mu _{e'})+\mu _e(\sum _{\left\{ e'\in E_p^S\right\} }a_{e'})-\delta (\sum _{\left\{ e'\in E_p^S\right\} }a_{e'})(\sum _{\left\{ e''\in E_p^S\right\} }\mu _{e''})\).

Hence, \({\text {Pr}}(|{\hat{\epsilon }}_e^S(H,x)-\epsilon _e^S(H)|\ge \delta )\le {\text {Pr}}(|z(x)|\ge \delta _1)={\text {Pr}}(u_1\ge 0)+{\text {Pr}}(u_2\ge 0)\).

The mean and variance of \(u_1\) and \(u_2\) is

$$\begin{aligned} E(u_1)=&E(u_2)=-\delta _1\left( \sum _{\left\{ e'\in E_p^S\right\} }\mu _{e'}\right) ^2\\ V(u_1)=&\sum \limits _{\left\{ f\in F \right\} }\left( \left( \sum \limits _{\left\{ e'\in E_p^S\right\} }\frac{y_{f,e}^S}{c_e^S}\cdot \mu _{e'}-\frac{y_{f,e'}^S}{c_e^S}\cdot \mu _e\right) -\delta _1\left( \sum \limits _{\left\{ e'\in E_p^S\right\} }\mu _{e'}\right) \left( \sum \limits _{\left\{ e''\in E_p^S\right\} }\frac{y_{f,e''}^S}{c_{e''}^S}\right) \right) V_f\\ V(u_2)=&\sum \limits _{\left\{ f\in F \right\} }\left( \left( \sum \limits _{\left\{ e'\in E_p^S \right\} }\frac{y_{f,e'}^S}{c_{e'}^S}\cdot \mu _e-\frac{y_{f,e}^S}{c_e^S}\mu _{e'}\right) -\delta _1\left( \sum \limits _{\left\{ e'\in E_p^S\right\} }\mu _{e'}\right) \left( \sum \limits _{\left\{ e''\in E_p^S\right\} }\frac{y_{f,e''}^S}{c_{e''}^S}\right) \right) V_f \end{aligned}$$

Set \(\delta _1={2\sqrt{\max \left\{ V(u_1),V(u_2)\right\} }}/{E(u_1)}\). According to Chebyshev’s Inequality,

$${\text {Pr}}(|z(x)|\ge \delta _1)={\text {Pr}}(u_1\ge 0)+{\text {Pr}}(u_2\ge 0)\le {V(u_1)}/{(E(u_1))^2}+{V(u_2)}/{(E(u_2))^2}\le 1/2.$$

Furthermore, \(\lim \limits _{x\rightarrow \infty }({1}/{x}\sum \limits _{t=0}^{x-1}|z(t)|\ge \delta _1)\) is equivalent to the event \(|z(t)|\ge \delta _1\) happens for infinitely many t as \(x\rightarrow \infty\). Let \(\left\{ t_{k'}\right\}\) denote the sequence of time such that \(|z(t_{k'})|\ge \delta _1\). Select a sub-sequence (denoted as \(\left\{ t_{k''}\right\}\)) of \(\left\{ t_{k'}\right\}\) such that the auto-correlation among \(|z(t_{k''})|\) is negligible. Clearly, the cardinality of \(\left\{ t_{k''}\right\}\) (denoted as m) is also infinite. Hence,

$$\lim \limits _{x\rightarrow \infty }{\text {Pr}}\left( {1}/{x}\sum \limits _{t=0}^{x-1}|z(t)|\ge \delta _1\right) \le \lim \limits _{x\rightarrow \infty }\bigcup \limits _{t_{k''}}{\text {Pr}}(|z(t_{k''})|\ge \delta _1)\le \lim \limits _{m\rightarrow \infty }({1}/{2})^m\rightarrow 0$$

Moreover, since \(\lim \limits _{M\rightarrow \infty }V(u_1)\rightarrow 0\), and \(\lim \limits _{M\rightarrow \infty }V(u_2)\rightarrow 0\). For arbitrarily small \(\delta _1\) and \(\delta _0\) (\(\delta =\delta _0+\delta _1\)) we can always find a large enough \(M_2\), such that for any \(M\ge M_2>1\),

$$\lim \limits _{x\rightarrow \infty }{\text {Pr}}\left( {1}/{x}\sum \limits _{t=0}^{x-1}|{\hat{\epsilon }}_e^S(H,x)-\epsilon _e^S (H)|\ge \delta \right) \le \lim \limits _{\delta _1\rightarrow 0}\lim \limits _{x\rightarrow \infty }{\text {Pr}}\left( {1}/{x}\sum \limits _{t=0}^{x-1}|z(t)|\ge \delta _1\right) \rightarrow 0$$
(24)
$${\text {Pr}}\left( \left| E\left( {\hat{\epsilon }}_e^S(H,x)\right) -\epsilon _e^S (H)\right| \ge \delta \right) =0$$
(25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Lea, CT. Oblivious routing in wireless mesh networks. Wireless Netw 22, 2337–2353 (2016). https://doi.org/10.1007/s11276-015-1092-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1092-z

Keywords

Navigation