Skip to main content
Log in

Radius selection for lattice sphere decoder-based block data transmission systems

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Lattice sphere decoder (LSD) searches lattice points in space within a certain radius (d), where the closest point obtained is considered the solution. It is well known in LSD, when the initial radius (d) increases, the complexity increase. Therefore, this paper aims to obtain an initial radius (d) exact expression to reduce the system complexity with reasonable performance. The derived expression shows that initial radius (d) depends on lattice dimension n, signal-to-noise ratio (\(\gamma\)), and noise variance \(\sigma^{2}\). Hence, this paper proposed a new LSD for BDTS based on this initial radius technique. The proposed LSD achieves a good balance between complexity and performance. Other analytical expressions for complexity and performance in relation with (d) are also derived. It has been observed that the convergence between the analytical system performance and complexity with their respective simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Albreem, M. A. M., Salleh, M. F. M., & Babu, S. P. K. (2011). Reduced complexity optimum detector for block data transmission systems using lattice sphere decoding technique. IEICE Electronics Express (ELEX), 8(9), 644–649.

    Article  Google Scholar 

  2. Albreem, M. A. M. (2015). An efficient lattice sphere decoding technique for multi-carrier systems. Wireless Personal Communications, 82(3), 1825–1831.

    Article  Google Scholar 

  3. Damen, M. O., El Gamal, H., & Caire, G. (2003). On maximum-likelihood detection and the search for the closest lattice point. IEEE Transactions on Information Theory, 49(10), 2389–2402.

    Article  MATH  Google Scholar 

  4. Hosseini, F. E., & Moghaddam, S. S. (2010). Initial radius selection of sphere decoder for practical applications of mimo channels. In Complexity in engnieering 2010 (COMPENG), pp. 61–63.

  5. Yongtao, W., & Roy, K. (2005). A new reduced-complexity sphere decoder with true lattice-boundary-awareness for multi-antenna systems. In IEEE international symposium in circuits and systems (ISCAS 2005), Vo. 4965, pp. 4963–4966.

  6. Albreem, M. A. M., & Salleh, M. F. M. (2014). Lattice sphere decoding technique for block data transmission systems with special channel matrices. Wireless Personal Communications, 79(1), 265–277.

    Article  Google Scholar 

  7. Hassibi, B., & Vikalo, H. (2005). On the sphere-decoding algorithm I. Expected complexity. IEEE Transactions on Signal Processing, 53(8), 2806–2818.

    Article  MathSciNet  Google Scholar 

  8. Li, X., & Cui, X. (2004). Application of lattice code decoder to SC-CP for short block length. Electronics Letters, 40(15), 954–955.

    Article  Google Scholar 

  9. Babu, S. P. K., Salleh, M. F. M., & Ghani, F. (2009). Reduced complexity optimum detector for block data transmission systems. IEICE Elctronics Express (ELEX), 6(23), 1649–1655.

    Article  Google Scholar 

  10. Murugan, A. D., El-Gamal, H., Damen, M. O., & Caire, G. (2006). A unified framework for tree search decoding: Rediscovering the sequential decoder. IEEE Transactions on Information Theory, 52(3), 933–953.

    Article  MathSciNet  MATH  Google Scholar 

  11. Albreem, M. A. M., & Salleh, M. F. M. (2015). Regularized lattice sphere decoding for block data transmission systems. Wireless Personal Communications, 82(3), 1833–1850.

    Article  Google Scholar 

  12. Conway, J. H., & Sloane, N. J. A. (1999). Sphere packings, lattices and goups. Berlin: Springer.

    Book  Google Scholar 

  13. Stern, H. P., & Mahmoud, S. A. (2004). Communication systems analysis and design. Upper Saddle River: Prentice Hall.

    Google Scholar 

  14. Tse, D., & Viswanath, P. (2005). Fundamental of wireless communication. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  15. Lee, E. A. (1994). Digital communication. Dordrecht: Kluwer Academic.

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Higher Education (Malaysia), University Malaysia Perlis (UniMAP), and University Science Malaysia (USM) for their financial supports and fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. M. Albreem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albreem, M.A.M., Salleh, M.F.M. Radius selection for lattice sphere decoder-based block data transmission systems. Wireless Netw 22, 655–662 (2016). https://doi.org/10.1007/s11276-015-0993-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0993-1

Keywords

Navigation