Skip to main content
Log in

Can mesenchymal stem/stromal cells and their secretomes combat bacterial persisters?

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The increasing number of life-threatening infections caused by persister bacteria is associated with various issues, including antimicrobial resistance and biofilm formation. Infections due to persister cells are often difficult to suppress without the use of last-resort antibiotics. Throughout the world, bacterial persistence and resistance create an unmet clinical demand for the exploration of newly introduced therapeutic approaches. Mesenchymal stem / stromal cells (MSCs) have an antimicrobial activity to protect against bacterial infections, including those caused by bacterial persisters. MSCs have substantial potential to secrete antimicrobial peptides (AMPs), including cathelicidin, beta-defensins, lipocalin-2, hepcidin, indoleamine 2,3-dioxygenase (IDO), cysteine proteases, and inducible nitric oxide synthases (iNOS). MSCs possess the potential to contribute to innate immunity by regulating the immune response. Recently, MSCs and their secreted components have been reported to improve antimicrobial activity. Bactericidal activity by MSCs and their secretomes has been shown to be mediated in part by the secretion of AMPs. Even though they were discovered more than 80 years ago, therapeutic options for persisters are restricted, and there is an urgent need for alternative treatment regimens. Hence, this review intends to critically assess the current literature on the effects of MSCs and their secretomes on persister bacteria. MSCs and their secretome-based therapies could be preferred as an up-and-coming approach to reinforce the antimicrobial efficiency in persister infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Agard M, Asakrah S, Morici LA (2013) PGE(2) suppression of innate immunity during mucosal bacterial infection. Front Cell Infect Microbiol 3:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Arabpour M, Saghazadeh A, Rezaei N (2021) Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell-derived exosomes. Int Immunopharmacol 97:107823

    Article  CAS  PubMed  Google Scholar 

  • Bahroudi M, Bakhshi B, Soudi S, Najar-peerayeh S (2020) Antibacterial and antibiofilm activity of bone marrow-derived human mesenchymal stem cells secretome against Vibrio cholerae. Microb Pathog 139:103867

    Article  CAS  PubMed  Google Scholar 

  • Barthold SW, Hodzic E, Imai DM, Feng S, Yang X, Luft BJ (2010) Ineffectiveness of tigecycline against persistent Borrelia burgdorferi. Antimicrob Agents Chemother 54:643–651

    Article  CAS  PubMed  Google Scholar 

  • Battah B (2021) Emerging of bacterial resistance: an ongoing threat during and after the syrian crisis. J Infect Dev Ctries 15:179–184

    Article  CAS  PubMed  Google Scholar 

  • Bernardo ME, Fibbe WE (2013) Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13:392–402

    Article  CAS  PubMed  Google Scholar 

  • Bigger J (1944) Treatment of staphylococcal infections with penicillin by intermittent sterilisation. The Lancet 244:497–500

    Article  Google Scholar 

  • Brandau S, Jakob M, Bruderek K, Bootz F, Giebel B, Radtke S, Mauel K, Jäger M, Flohé SB, Lang S (2014) Mesenchymal stem cells augment the anti-bacterial activity of neutrophil granulocytes. PLoS ONE 9:e106903

    Article  PubMed  PubMed Central  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhai Z, Long H, Yang G, Deng B, Deng J (2020) Inducible expression of defensins and cathelicidins by nutrients and associated regulatory mechanisms. Peptides 123:170177

    Article  CAS  PubMed  Google Scholar 

  • Cho DI, Kim MR, Jeong HY, Jeong HC, Jeong MH, Yoon SH, Kim YS, Ahn Y (2014) Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp Mol Med 46:e70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow L, Johnson V, Impastato R, Coy J, Strumpf A, Dow S (2019) Antibacterial activity of human mesenchymal stem cells mediated directly by constitutively secreted factors and indirectly by activation of innate immune effector cells. Stem Cells Translational Medicine 9:235–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahl SL, Woodworth JS, Lerche CJ, Cramer EP, Nielsen PR, Moser C, Thomsen AR, Borregaard N, Cowland JB (2018) Lipocalin-2 functions as inhibitor of Innate Resistance to Mycobacterium tuberculosis. Front Immunol 9

  • DelaRosa O, Lombardo E (2010) Modulation of adult mesenchymal stem cells activity by toll-like receptors: implications on therapeutic potential. Mediators Inflamm 2010:865601

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding D-C, Shyu W-C, Lin S-Z (2011) Mesenchymal stem cells. Cell Transplant 20:5–14

    Article  PubMed  Google Scholar 

  • Ebrahim N, Mostafa O, El Dosoky RE, Ahmed IA, Saad AS, Mostafa A, Sabry D, Ibrahim KA, Farid AS (2018) Human mesenchymal stem cell-derived extracellular vesicles/estrogen combined therapy safely ameliorates experimentally induced intrauterine adhesions in a female rat model. Stem Cell Res Ther 9:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenreich W, Rudel T, Heesemann J, Goebel W (2022) Link between antibiotic persistence and antibiotic resistance in bacterial pathogens. Front Cell Infect Microbiol 12

  • Embers ME, Barthold SW, Borda JT, Bowers L, Doyle L, Hodzic E, Jacobs MB, Hasenkampf NR, Martin DS, Narasimhan S, Phillippi-Falkenstein KM, Purcell JE, Ratterree MS, Philipp MT (2013) Correction: persistence of Borrelia burgdorferi in Rhesus Macaques following antibiotic treatment of disseminated infection. PLoS ONE 8

  • English K (2013) Mechanisms of mesenchymal stromal cell immunomodulation. Immunol Cell Biol 91:19–26

    Article  CAS  PubMed  Google Scholar 

  • Gerstel U, Czapp M, Bartels J, Schröder JM (2009) Rhamnolipid-induced shedding of flagellin from Pseudomonas aeruginosa provokes hBD-2 and IL-8 response in human keratinocytes. Cell Microbiol 11:842–853

    Article  CAS  PubMed  Google Scholar 

  • Ghasemian SO (2021) Application of Exosomes-Derived mesenchymal stem cells in treatment of Fungal Diseases: from Basic to Clinical Sciences. Front Fungal Biol 2

  • Gu F, Zhang K, Li J, Xie X, Wen Q, Sui Z, Su Z, Yu T (2022) Changes of Migration, Immunoregulation and osteogenic differentiation of mesenchymal stem cells in different stages of inflammation. Int J Med Sci 19:25–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta N, Krasnodembskaya A, Kapetanaki M, Mouded M, Tan X, Serikov V, Matthay MA (2012) Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 67:533–539

    Article  PubMed  Google Scholar 

  • Ha DH, Kim HK, Lee J, Kwon HH, Park GH, Yang SH, Jung JY, Choi H, Lee JH, Sung S, Yi YW, Cho BS (2020) Mesenchymal Stem/Stromal cell-derived exosomes for Immunomodulatory therapeutics and skin regeneration. Cells 9

  • Hackstein H, Lippitsch A, Krug P, Schevtschenko I, Kranz S, Hecker M, Dietert K, Gruber AD, Bein G, Brendel C, Baal N (2015) Prospectively defined murine mesenchymal stem cells inhibit Klebsiella pneumoniae-induced acute lung injury and improve pneumonia survival. Respir Res 16:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, Hua D, Shao C, Shi Y (2022) The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Therapy 7:92

    Article  Google Scholar 

  • Harman RM, Yang S, He MK, Van de Walle GR (2017) Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds. Stem Cell Res Ther 8:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrell CR, Jovicic N, Djonov V, Arsenijevic N, Volarevic V (2019) Mesenchymal stem cell-derived Exosomes and other Extracellular vesicles as new remedies in the Therapy of Inflammatory Diseases. Cells 8

  • Hobby GL, Meyer K, Chaffee E (1942) Observations on the mechanism of action of penicillin. Proc Soc Exp Biol Med 50:281–285

    Article  CAS  Google Scholar 

  • Hosseiniyan Khatibi SM, Kheyrolahzadeh K, Barzegari A, Rahbar Saadat Y, Zununi Vahed S (2020) Medicinal signaling cells: a potential antimicrobial drug store. J Cell Physiol 235:7731–7746

    Article  CAS  PubMed  Google Scholar 

  • Jiang X-X, Zhang Y, Liu B, Zhang S-X, Wu Y, Yu X-D, Mao N (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105:4120–4126

    Article  CAS  PubMed  Google Scholar 

  • Johnson V, Webb T, Norman A, Coy J, Kurihara J, Regan D, Dow S (2017) Activated mesenchymal stem cells interact with antibiotics and host Innate Immune responses to control chronic bacterial infections. Sci Rep 7:9575

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson V, Chow L, Harrison J, Soontararak S, Dow S (2022) Activated mesenchymal stromal cell therapy for treatment of Multi-Drug resistant bacterial infections in Dogs. Front Veterinary Sci 9

  • Kim N, Cho SG (2016) Overcoming immunoregulatory plasticity of mesenchymal stem cells for accelerated clinical applications. Int J Hematol 103:129–137

    Article  CAS  PubMed  Google Scholar 

  • Kol A, Foutouhi S, Walker NJ, Kong NT, Weimer BC, Borjesson DL (2014) Gastrointestinal microbes interact with canine adipose-derived mesenchymal stem cells in vitro and enhance immunomodulatory functions. Stem Cells Dev 23:1831–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW, Matthay MA (2010) Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 28:2229–2238

    Article  CAS  PubMed  Google Scholar 

  • Krasnodembskaya A, Samarani G, Song Y, Zhuo H, Su X, Lee JW, Gupta N, Petrini M, Matthay MA (2012) Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. Am J Physiol Lung Cell Mol Physiol 302:L1003–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Nina PB, Jp D, Kumar S, Singh B, Tiwari RR (2021) Futuristic non-antibiotic therapies to Combat Antibiotic Resistance: a review. Front Microbiol 12:609459

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis K (2012) Persister cells: Molecular Mechanisms related to antibiotic tolerance. In: (Coates ARM (ed) Antibiotic resistance. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 121–133

    Chapter  Google Scholar 

  • Li Z, Zhang Z, Chen X, Zhou J, Xiao XM (2017) Treatment evaluation of Wharton’s jelly-derived mesenchymal stem cells using a chronic salpingitis model: an animal experiment. Stem Cell Res Ther 8:232

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Chen W, Huang S, Tang X, Yao G, Sun L (2020b) Mesenchymal Stem Cells Enhance Pulmonary Antimicrobial Immunity and Prevent Following Bacterial Infection. Stem Cells Int 2020: 3169469

  • Li, Zhu YG, Jia XM, Liu D, Qu JM (2020a) Adipose-derived mesenchymal stem cells ameliorating Pseudomonas aeruginosa-induced Acute Lung infection via inhibition of NLRC4 inflammasome. Front Cell Infect Microbiol 10:581535

    Google Scholar 

  • Liao W, Tang X, Li X, Li T (2019) Therapeutic effect of human umbilical cord mesenchymal stem cells on tubal factor infertility using a chronic salpingitis murine model. Arch Gynecol Obstet 300:421–429

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Yu M, Xie D, Wang L, Ye C, Zhu Q, Liu F, Yang L (2020) Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Res Ther 11:259

    Article  PubMed  PubMed Central  Google Scholar 

  • Manferdini C, Paolella F, Gabusi E, Gambari L, Piacentini A, Filardo G, Fleury-Cappellesso S, Barbero A, Murphy M, Lisignoli G (2017) Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: in vitro evaluation. Osteoarthritis Cartilage 25:1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Mao YX, Xu JF, Seeley EJ, Tang XD, Xu LL, Zhu YG, Song YL, Qu JM (2015) Adipose tissue-derived mesenchymal stem cells attenuate pulmonary infection caused by Pseudomonas aeruginosa via inhibiting overproduction of prostaglandin E2. Stem Cells 33:2331–2342

    Article  CAS  PubMed  Google Scholar 

  • Marrazzo P, Crupi AN, Alviano F, Teodori L, Bonsi L (2019) Exploring the roles of MSCs in infections: focus on bacterial diseases. J Mol Med (Berl) 97:437–450

    Article  CAS  PubMed  Google Scholar 

  • Marx C, Gardner S, Harman RM, Van de Walle GR (2020) The mesenchymal stromal cell secretome impairs methicillin-resistant Staphylococcus aureus biofilms via cysteine protease activity in the equine model. Stem Cells Transl Med 9:746–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meisel R, Brockers S, Heseler K, Degistirici Ö, Bülle H, Woite C, Stuhlsatz S, Schwippert W, Jäger M, Sorg R, Henschler R, Seissler J, Dilloo D, Däubener W (2011) Human but not murine multipotent mesenchymal stromal cells exhibit broad-spectrum antimicrobial effector function mediated by indoleamine 2,3-dioxygenase. Leukemia 25:648–654

    Article  CAS  PubMed  Google Scholar 

  • Mulcahy LR, Burns JL, Lory S, Lewis K (2010) Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 192:6191–6199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49

    Article  PubMed  Google Scholar 

  • Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Lu L, Yao Z, Goodman SB (2019) Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials 196:80–89

    Article  CAS  PubMed  Google Scholar 

  • Park J, Kim S, Lim H, Liu A, Hu S, Lee J, Zhuo H, Hao Q, Matthay MA, Lee JW (2019) Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe E. coli pneumonia. Thorax 74:43–50

    Article  PubMed  Google Scholar 

  • Perlee D, de Vos AF, Scicluna BP, Mancheño P, de la Rosa O, Dalemans W, Nürnberg P, Lombardo E, van der Poll T (2019) Human adipose-derived mesenchymal stem cells modify lung immunity and improve Antibacterial Defense in Pneumosepsis caused by Klebsiella pneumoniae. Stem Cells Transl Med 8:785–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powers JH (2004) Antimicrobial drug development–the past, the present, and the future. Clin Microbiol Infect 10(Suppl 4):23–31

    Article  PubMed  Google Scholar 

  • Qian X, An N, Ren Y, Yang C, Zhang X, Li L (2021) Immunosuppressive Effects of mesenchymal stem cells-derived exosomes. Stem Cell Reviews and Reports 17:411–427

    Article  CAS  PubMed  Google Scholar 

  • Raghav A, Tripathi P, Mishra BK, Jeong GB, Banday S, Gautam KA, Mateen QN, Singh P, Singh M, Singla A, Ahmad J (2021) Mesenchymal stromal cell-derived tailored exosomes treat Bacteria-Associated Diabetes Foot Ulcers: a customized Approach from Bench to Bed. Front Microbiol 12:712588

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren Z, Zheng X, Yang H, Zhang Q, Liu X, Zhang X, Yang S, Xu F, Yang J (2020) Human umbilical-cord mesenchymal stem cells inhibit bacterial growth and alleviate antibiotic resistance in neonatal imipenem-resistant Pseudomonas aeruginosa infection. Innate Immun 26:215–221

    Article  CAS  PubMed  Google Scholar 

  • Rotem E, Loinger A, Ronin I, Levin-Reisman I, Gabay C, Shoresh N, Biham O, Balaban NQ (2010) Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proc Natl Acad Sci 107:12541–12546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell KA, Garbin LC, Wong JM, Koch TG (2020) Mesenchymal stromal cells as potential Antimicrobial for Veterinary Use—A Comprehensive Review. Front Microbiol 11

  • Saberpour M, Bakhshi B, Najar-Peerayeh S (2020) Evaluation of the Antimicrobial and Antibiofilm Effect of Chitosan Nanoparticles as Carrier for Supernatant of Mesenchymal Stem cells on Multidrug-Resistant Vibrio cholerae. Infect Drug Resist 13:2251–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherr TD, Hanke ML, Huang O, James DB, Horswill AR, Bayles KW, Fey PD, Torres VJ, Kielian T (2015) Staphylococcus aureus Biofilms induce macrophage dysfunction through Leukocidin AB and Alpha-Toxin. mBio 6

  • Schwab M, Reynders V, Shastri Y, Loitsch S, Stein J, Schröder O (2007) Role of nuclear hormone receptors in butyrate-mediated up-regulation of the antimicrobial peptide cathelicidin in epithelial colorectal cells. Mol Immunol 44:2107–2114

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Dou H, Li X, Zhao X, Li Y, Liu D, Ji J, Liu F, Ding L, Ni Y, Hou Y (2017) Exosomal miR-146a contributes to the enhanced therapeutic efficacy of Interleukin-1β-Primed mesenchymal stem cells against Sepsis. Stem Cells 35:1208–1221

    Article  CAS  PubMed  Google Scholar 

  • Stricker RB, Johnson L (2011) The pain of chronic Lyme disease: moving the discourse backward? Faseb j 25:4085–4087

    Article  CAS  PubMed  Google Scholar 

  • Sung DK, Chang YS, Sung SI, Yoo HS, Ahn SY, Park WS (2016) Antibacterial effect of mesenchymal stem cells against Escherichia coli is mediated by secretion of beta- defensin- 2 via toll- like receptor 4 signalling. Cell Microbiol 18:424–436

    Article  CAS  PubMed  Google Scholar 

  • Sutton MT, Fletcher D, Ghosh SK, Weinberg A, van Heeckeren R, Kaur S, Sadeghi Z, Hijaz A, Reese J, Lazarus HM, Lennon DP, Caplan AI, Bonfield TL (2016) Antimicrobial Properties of Mesenchymal Stem Cells: Therapeutic Potential for Cystic Fibrosis Infection, and Treatment. Stem Cells International 2016: 5303048

  • Terness P, Bauer TM, Röse L, Dufter C, Watzlik A, Simon H, Opelz G (2002) Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196:447–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobin I, Zhang G (2023) Regulation of host defense peptide synthesis by polyphenols. Antibiotics 12:660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran-Winkler HJ, Love JF, Gryllos I, Wessels MR (2011) Signal transduction through CsrRS confers an invasive phenotype in Group A Streptococcus. PLoS Pathogens 7:e1002361. https://doi.org/10.1371/journal.ppat.1002361

  • Uhlmann J, Rohde M, Siemens N, Kreikemeyer B, Bergman P, Johansson L, Norrby-Teglund A (2016) LL-37 triggers formation of Streptococcus pyogenes extracellular vesicle-like structures with immune stimulatory properties. J Innate Immunity 8:243–257. https://doi.org/10.1159/000441896

  • Veening J-W, Smits WK, Kuipers OP (2008) Bistability, Epigenetics, and bet-hedging in Bacteria. Annu Rev Microbiol 62:193–210

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–1093

    Article  CAS  PubMed  Google Scholar 

  • Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS ONE 5:e10088

    Article  PubMed  PubMed Central  Google Scholar 

  • Wehkamp K, Schwichtenberg L, Schröder JM, Harder J (2006) Pseudomonas aeruginosa- and IL-1beta-mediated induction of human beta-defensin-2 in keratinocytes is controlled by NF-kappaB and AP-1. J Invest Dermatol 126:121–127

    Article  CAS  PubMed  Google Scholar 

  • Weiss ARR, Dahlke MH (2019) Immunomodulation by Mesenchymal Stem cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol 10:1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagi H, Chen AF, Hirsch D, Rothenberg AC, Tan J, Alexander PG, Tuan RS (2020) Antimicrobial activity of mesenchymal stem cells against Staphylococcus aureus. Stem Cell Res Ther 11:293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Wu Y, Xie H, Li M, Ming S, Li L, Li M, Wu M, Gong S, Huang X (2016) Macrophage-mediated inflammatory response decreases mycobacterial survival in mouse MSCs by augmenting NO production. Sci Rep 6:27326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Lin S, Guo N, Zhao C, Shen S, Bu X, Ye H (2014) Marrow mesenchymal stromal cells reduce methicillin-resistant Staphylococcus aureus infection in rat models. Cytotherapy 16:56–63

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2014) Persisters, persistent infections and the Yin-Yang model. Emerg Microbes Infect 3:e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L-J, Gallo RL (2016) Antimicrobial peptides. Curr Biol 26:R14–R19

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yew WW, Barer MR (2012) Targeting persisters for tuberculosis control. Antimicrob Agents Chemother 56:2223–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Chen F, Wu W, Sun M, Bilotta AJ, Yao S, Xiao Y, Huang X, Eaves-Pyles TD, Golovko G, Fofanov Y, D’Souza W, Zhao Q, Liu Z, Cong Y (2018) GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol 11:752–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Yamamoto Y, Xiao Z, Ochiya T (2019) The immunomodulatory functions of mesenchymal Stromal/Stem cells mediated via paracrine activity. J Clin Med 8

Download references

Funding

This work was funded by Türkiye Sağlık Enstitüleri Başkanlığı. Grand number: 22985.

Author information

Authors and Affiliations

Authors

Contributions

M.B. and O.F. wrote and revised the main manuscript text. All authors reviewed the manuscript draft and approved the final version for submission.M.B. ORCID ID: 0000-0001-7089-5661O.F. ORCID ID: 0000-0001-5312-4742.

Corresponding author

Correspondence to Mesude Bicer.

Ethics declarations

Ethics approval

We confirm that this work is original, has not been published elsewhere, and is not currently under consideration for publication elsewhere.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Conflict of interest

We have no competing interests with regard of this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bicer, M., Fidan, O. Can mesenchymal stem/stromal cells and their secretomes combat bacterial persisters?. World J Microbiol Biotechnol 39, 276 (2023). https://doi.org/10.1007/s11274-023-03725-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03725-x

Keywords

Navigation