Skip to main content
Log in

Characterization of a uronate dehydrogenase from Thermobispora bispora for production of glucaric acid from hemicellulose substrate

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A thermostable uronate dehydrogenase Tb-UDH from Thermobispora bispora was over-expressed in Escherichia coli using the T7 polymerase expression system. The Tb-UDH was purified by metal affinity chromatography, and gave a single band on SDS-PAGE. The maximum activity on glucuronic acid was found at 60 °C and pH 7.0. The purified enzyme retained over 58% of its activity after holding a pH ranging from 7.0 to 7.5 for 1 h at 60 °C. The Km and Vmax values of the purified Tb-UDH for Glucuronic acid (GluUA) were 0.165 mM and 117.7 U mg−1, respectively, those for galacturonic acid (GalUA) were 0.115 mM and 104.2 U mg−1, respectively, and those for NAD+ were 0.120 mM and 133.3 U mg−1, respectively; the turnover number (kcat) with GluUA as a substrate was higher than that with GalUA; however, the Michaelis constant (Km) for GalUA was lower than that for GluUA. After 60 min of incubation at 50 °C, Tb-UDH exhibited a conversion ratio for glucuronic acid to the glucaric acid of 84% on chemical reagent and 81.3% on hydrolysates from breech xylans formed by xylanase and α-glucuronidase. This work shows that biocatalytic routes have great potential for the conversion of hemicellulose substrate into value-added products derived from renewable biomass.

TOC Graphic

(A) The structure of the xylan is described and the site of action of the xylan degrading enzyme is indicated. (B) The effect of substrate concentration on recombinant Tb-UDH activity when galacturonic acid was used as substrate. (C) SDS-PAGE analysis of E. coli BL21 (DE3) harboring pET-20b(+) and pET-20b-Tb-UDH. (D) Oxidative conversion of glucuronic acid from a beechwood xylan to glucaric acid

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbadi A, Gotlieb KF, Meiberg JBM, Peters JA, van Bekkum H (1999) New Ca-sequestering materials. Green Chem 1(5):231–235

    Article  CAS  Google Scholar 

  • Adsul MG, Singhvi MS, Gaikaiwari SA, Gokhale DV (2011) Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresour Technol 102: 4304–4312

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation quantities microgram principle of Protein-Dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Charles CL, Kibblewhite RE, Paavola CD, Orts WJ, Wagschal K (2016) Production of glucaric acid from hemicellulose substrate by rosettasome enzyme assemblies. Mol Biotechnol 58:489–496

    Article  CAS  Google Scholar 

  • Haki G (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89(1):17–34

    Article  PubMed  CAS  Google Scholar 

  • Henssen A (1957) Beiträge zur Morphologie und Systematik der thermophilen Actinomyceten. Archiv Für Mikrobiologie 26(4):373–414

    Article  PubMed  CAS  Google Scholar 

  • Ibert M, Fuertès P, Merbouh N, Fiol-Petit C, Feasson C, Marsais F (2010) Improved preparative electrochemical oxidation of β-glucose to β-glucaric acid. Electrochim Acta 55(10):3589–3594

    Article  CAS  Google Scholar 

  • Jordan DB, Bowman MJ, Braker JD, Dien BS, Hector RE, Lee CC, Mertens JA, Wagschal K (2012) Plant cell walls to ethanol. Biochem J 442(2):241–252

    Article  PubMed  CAS  Google Scholar 

  • Juturu V, Wu JC (2012) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv 30(6):1219–1227

    Article  PubMed  CAS  Google Scholar 

  • Kallberg Y, Oppermann UJ, Rnvall H, Persson B (2002) Short-chain dehydrogenases/reductases (SDRs). Eur J Biochem 269(18):4409–4417

    Article  PubMed  CAS  Google Scholar 

  • Kiely DE, Chen L, Lin TH (1994) Hydroxylated nylons based on unprotected esterified D-glucaric acid by simple condensation reactions. J Am Chem Soc 116:571–578

    Article  CAS  Google Scholar 

  • Kiely DE, Chen L, Lin T (2000) Synthetic polyhydroxypolyamides from galactaric, xylaric, D-glucaric, and D-mannaric acids and alkylenediamine monomers some comparisons. J Polym Sci Part A 38(3):594–603

    Article  CAS  Google Scholar 

  • Kochkar H, Lassalle L, Morawietz M, Hölderich WF (2000) Regioselective oxidation of hydroxyl groups of sugar and its derivatives using silver catalysts mediated by TEMPO and peroxodisulfate in water. J Catal 194(2):343–351

    Article  CAS  Google Scholar 

  • Kuivanen J, Wang YMJ, Richard P (2016) Engineering Aspergillus niger for galactaric acid production: elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9. Microb Cell Fact 15(1):210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lagaert S, Pollet A, Courtin CM, Volckaert G (2014) β-Xylosidases and α-l-arabinofuranosidases: accessory enzymes for arabinoxylan degradation. Biotechnol Adv 32(2):316–332

    Article  PubMed  CAS  Google Scholar 

  • Lee CC, Kibblewhite RE, Paavola CD, Orts WJ, Wagschal K (2016) Production of glucaric acid from hemicellulose substrate by rosettasome enzyme assemblies. Mol Biotechnol 58(7):489–496

    Article  PubMed  CAS  Google Scholar 

  • Lever M (1972) A new reaction for colorimetric determination of carbohydrates. Anal Biochem 47(1): 273–279

    Article  PubMed  CAS  Google Scholar 

  • Liolios K, Sikorski J, Jando M, Lapidus A, Copeland A, Rio TGD, Nolan M, Lucas S, Tice H, Cheng JF (2010) Complete genome sequence of Thermobispora bispora type strain (R51 T). Stand Genom Sci 2(3):318–326

    Article  Google Scholar 

  • Liu Y, Gong X, Wang C, Du G, Chen J, Kang Z (2016) Production of glucaric acid from myo-inositol in engineered Pichia pastoris. Enzyme Microb Technol 91:8

    Article  PubMed  CAS  Google Scholar 

  • Merbouh N, Thaburet JF, Ibert M (2002) Facile nitroxide-mediated oxidations of D-glucose to D-glucaric acid. ChemInform 33:75–78

    Google Scholar 

  • Milner Y, Avigad G (1967) A copper reagent for the determination of hexuronic acid and certain ketohexoses. Carbohyd Res 4(4):359–361

    Article  CAS  Google Scholar 

  • Mojzita D, Wiebe M, Hilditch S, Boer H, Penttilä M, Richard P (2010) Metabolic engineering of fungal strains for conversion of D-galacturonate to meso-galactarate. Appl Environ Microbiol 76(1):169

    Article  PubMed  CAS  Google Scholar 

  • Moon TS, Yoon SH, Lanza AM, Roymayhew JD, Prather KLJ (2009) Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Appl Environ Microbiol 75(3):589–595

    Article  PubMed  CAS  Google Scholar 

  • Moon TS, Dueber JE, Shiue E, Prather KLJ (2010) Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab Eng 12(3):298

    Article  PubMed  CAS  Google Scholar 

  • Persson B, Kallberg Y, Oppermann U, Jornvall H (2003) Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs). Chem Biol Interact 143–144:271–278

    Article  PubMed  CAS  Google Scholar 

  • Philipp BJ, Protzko RJ, Andrich Jonas MS, Stefan B, Dueber JE, Somerville CR (2014) Identification and characterization of a galacturonic acid transporter from Neurospora crassa and its application for Saccharomyces cerevisiae fermentation processes. Biotechnol Biofuels 7(1):20

    Article  CAS  Google Scholar 

  • Pick A, Schmid J, Sieber V (2015) Characterization of uronate dehydrogenases catalysing the initial step in an oxidative pathway. Microb Biotechnol 4(8):633–643

    Article  CAS  Google Scholar 

  • Shao WL, Xue YM (2002) Molecular biotechnology in exploiting the resource of hemicellulose. J Food Sci Biotechnol 21(01):88–93

    CAS  Google Scholar 

  • Smith TN, Hash K, Davey CL, Mills H, Williams H, Kiely DE (2012) Modifications in the nitric acid oxidation of D-glucose. Carbohyd Res 350(10):6

    Article  CAS  Google Scholar 

  • Steger K, Jarvis S, Vasara T, Romantschuk M, Sundh I (2007) Effects of differing temperature management on development of Actinobacteria populations during composting. Res Microbiol 158(7):617–624

    Article  PubMed  CAS  Google Scholar 

  • Tuck CO, Pe Rez E, Horva Th IT, Sheldon RA, Poliakoff M (2012) Valorization of biomass: deriving more value from waste. Science 337:695–699

    Article  PubMed  CAS  Google Scholar 

  • Wagschal K, Jordan DB, Lee CC, Younger A, Braker JD, Chan VJ (2015) Biochemical characterization of uronate dehydrogenases from three Pseudomonads, Chromohalobacter salixigens, and Polaromonas naphthalenivorans. Enzyme Microb Technol 69:62–68

    Article  PubMed  CAS  Google Scholar 

  • Walaszek Z, Hanausek M, Adams AK (1991) Cholesterol lowering effects of dietary D-glucarate. FASEB J 5:A930

    Google Scholar 

  • Wang Y, Zhangn Z, Ruan J (1996) A proposal to transfer Microbispora bispora (Lechevalier 1965) to a new genus, Thermobispora gen. Nov., As Thermobispora bispora comb. Nov. Int J Syst Bacteriol 46(4):933–938

    Article  PubMed  CAS  Google Scholar 

  • Werpy TA, Holladay JE, White JF (2004) Top value added chemicals from biomass: I. Results of screening for potential candidates from sugars and synthesis gas. Pacific Northwest National Laboratory (PNNL) and National Renewable Energy Laboratory (NREL) 1-477

  • Xue YM, Shao WL (2003) The xylan-degrading enzymes system from microorganism. Biotechnology 13:36–38

    Google Scholar 

  • Xue YM, Song XF, Yu J (2009) Overexpression of β-glucosidase from Thermotoga maritima for the production of highly purified aglycone isoflavones from soy flour. World J Microbiol Biotechnol 25(12):2165–2172

    Article  CAS  Google Scholar 

  • Yoon SH, Moon TS, Iranpour P, Lanza AM, Prather KJ (2009) Cloning and characterization of uronate dehydrogenases from two pseudomonads and Agrobacterium tumefaciens strain C58. J Bacteriol 191:1565–1573

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZS, Donaldson AA, Ma XX, Zhang ZS, Liu SJ (2012) Advancements and future directions in enzyme technology for biomass conversion. Biotechnol Adv 30:913–919

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Huaian Key Research and Development Program (Grant No. HAN201621).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yemin Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xue, Y., Cao, Z. et al. Characterization of a uronate dehydrogenase from Thermobispora bispora for production of glucaric acid from hemicellulose substrate. World J Microbiol Biotechnol 34, 102 (2018). https://doi.org/10.1007/s11274-018-2486-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2486-8

Keywords

Navigation