Skip to main content
Log in

Cloning of the cnr operon into a strain of Bacillaceae bacterium for the development of a suitable biosorbent

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, a potential microbial biosorbent was engineered to improve its capacity to remediate heavy metal contaminated water resources. A Bacillaceae bacterium isolated from a mining area was transformed with a plasmid carrying the (pECD312)-based cnr operon that encodes nickel and cobalt resistance. The bioadsorption ability of the transformed strain was evaluated for removal of nickel from metallurgical water relative to the wildtype strain. Results showed that transformation improved the adsorption capacity of the bacterium by 37 % at nickel concentrations equivalent to 150 mg/L. Furthermore it was possible to apply prediction modelling to study the bioadsorption behaviour of the transformed strain. As such, this work may be extended to the design of a nickel bioremediation plant utilising the newly developed Bacillaceae bacterium as a biosorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antsuki T, Sano D, Omura T (2003) Functional metal-binding proteins by metal-stimulated bacteria for the development of an innovative metal removal technology. Water Sci Technol 47(10):109–115

    CAS  Google Scholar 

  • Bueno BYN, Torem ML, Molina F, de Mesquita LMS (2008) Biosorption of lead (II), chromium (III) and copper (II) by R. Opacus: equilibrium and kinetic studies. Miner Eng 21(1):65–75

    Article  CAS  Google Scholar 

  • Bulut Y, Tez Z (2007) Adsorption studies on ground shells of hazelnut and almond. J Hazard Mater 149:35–41

    Article  CAS  Google Scholar 

  • Bupp S, Ghosh S (1991) Heavy metal uptake by microbial protein complexation. Paper presented at the Research Symposium, Annual WPCF Conference, Toronto, Canada, October 1991

  • Chakravarty R, Banerjee PC (2008) Morphological changes in acidophilic bacteium induced by heavy metals. Extremophiles 12:279–284

    Article  CAS  Google Scholar 

  • Chakravarty R, Manna S, Ghosh AK, Banerjee PC (2007) Morphological changes in an Acidocella strain in response to heavy metal stress. Res J Microbiol 2:742–748

    Article  CAS  Google Scholar 

  • Choudhary S, Sar P (2009) Characterization of a metal resistant Pseudomonas sp. isolated from uranium mine for its potential in heavy metal (Ni2+, Co2+, Cu2+ and Cd2+) sequestration. Bioresour Technol 100:2482–2492

    Article  CAS  Google Scholar 

  • Dhankhar R, Hooda A (2011) Fungal biosorption—an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32(5):467–491

    Article  CAS  Google Scholar 

  • Diels L, Dong Q, van der Lelie D, Baeyens W, Mergeay M (1995) The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals. J Ind Microbiol 14:142–153

    Article  CAS  Google Scholar 

  • Drewniak L, Ciezkowska M, Radlinska M, Sklodowska A (2015) Construction of the recombinant broad-host-range plasmids providing their bacterial hosts arsenic resistance and arsenite oxidation ability. J Biotechnol 196–197:42–51

    Article  Google Scholar 

  • Esposito A, Pagnanelli F, Lodi A, Solicio C, Veglio F (2001) Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH and biomass concentrations. Hydrometallurgy 60(2):129–141

    Article  CAS  Google Scholar 

  • Fosso-Kankeu E, Mulaba-Bafubiandi AF, Mamba BB, Barnard TG (2009) Mitigation of Ca, Fe and Mg loads in surface waters around mining areas using indigenous microorganism strains. Phys Chem Earth 34:824–829

    Article  Google Scholar 

  • Fosso-Kankeu E, Mulaba-Bafubiandi AF, Mamba BB, Marjanovic L, Barnard TG (2010) A comprehensive study of physical and physiological parameters that affects biosorption of metal pollutant from aqueous solutions. J Phys Chem Earth 35:672–678

    Article  Google Scholar 

  • Fosso-Kankeu E, Mulaba-Bafubiandi AF, Mamba BB, Barnard TG (2011) Prediction of metal-adsorption behaviour in the remediation of water contamination using indigenous microorganisms. J Environ Manag 92:2786–2793

    Article  CAS  Google Scholar 

  • Fosso-Kankeu E, Mittal H, Mishra SB, Mishra AK (2015) Gum ghatti and acrylic acid based biodegradable hydrogels for the effective adsorption of cationic dyes. J Ind Eng Chem 22:171–178

    Article  CAS  Google Scholar 

  • Fosso-Kankeu E, Mittal H, Waanders F, Ntwampe IO, Ray SS (2016) Preparation and characterization of gum karaya hydrogel nanocomposite flocculant for metal ions removal from mine effluents. Int J Environ Sci Technol 13:711–724

    Article  CAS  Google Scholar 

  • Fukushi K, Kato S, Antsuki T, Omura T (2001) Isolation of copper-binding proteins from activated sludge culture. Water Sci Technol 44(2–3):453–459

    CAS  Google Scholar 

  • Godjevargova T, Mihova S, Gabrovska K (2004) Fixed-bed biosorption of Cu2+ by polyacrylonitrile-immobilized dead cells of Saccharomyces cerevisiae. World J Microbiol Biotechnol 20(3):273–279

    Article  CAS  Google Scholar 

  • Goksungur Y, Uren S, Guvenc U (2005) Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresour Technol 96:103–109

    Article  Google Scholar 

  • Grass G, Grosse C, Nies DH (2000) Regulation of the cnr cobalt and nickel resistance determinant from Ralstonia sp. Strain CH34. J Bacteriol 182(5):1390–1398

    Article  CAS  Google Scholar 

  • Hemambika B, Rani MJ, Kannan VR (2011) Biosorption of heavy metals by immobilized and dead fungal cells: a comparative assessment. J Ecol Nat Environ 3(5):168–175

    CAS  Google Scholar 

  • Higham DP, Sadler PJ, Scawen MD (1986) Effect of cadmium on the morphology, membrane integrity and permeability of Pseudomonas putida. J Gen Microbiol 132:1475–1482

    CAS  Google Scholar 

  • Ji G, Silver S (1995) Plasmid resistance for heavy metals of environmental concern. J Ind Microbiol 14:61–75

    Article  CAS  Google Scholar 

  • Lam KH, Chow KC, Wong WK (1998) Construction of an efficient Bacillus subtilis system for extracellular production of heterologous protein. J Biotechnol 63:167–177

    Article  CAS  Google Scholar 

  • Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S (2009) Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Eng J 44(1):19–41

    Article  CAS  Google Scholar 

  • Marrero J, Auling G, Coto O, Nies DH (2007) High-level resistance to cobalt and nickel but probably no transenvelope efflux: metal resistance in the Cuban Serratia marcescens strain C-1. Microb Ecol 53:123–133

    Article  CAS  Google Scholar 

  • Mashitah MD, Azila YY, Bhatia S (2008) Biosorption of cadmium (II) ions by immobilized cells of Pycnopurus sanguineus from aqueous solution. Bioresour Technol 99(11):4742–4748

    Article  CAS  Google Scholar 

  • Mergeay M (1991) Towards an understanding of the genetics of bacterial metal resistance. Trends Biotechnol 9:17–24

    Article  CAS  Google Scholar 

  • Mittal H, Fosso-Kankeu E, Mishra SB, Mishra AK (2013) Biosorption potential of Gum ghatti-g-poly (acrylic acid) and susceptibility to biodegradation by B. subtilis. Int J Biol Macromol 62:370–378

    Article  CAS  Google Scholar 

  • Miwa Y, Nakata A, Ogiwara A, Yamamoto M, Fugita Y (2000) Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res 28:1206–1210

    Article  CAS  Google Scholar 

  • Muraleedharan TR, Venkobachar C (1990) Mechanism of biosorption of copper (II) by Ganoderma lucidum. Biotechnol Bioeng 35:320–325

    Article  CAS  Google Scholar 

  • Neumann G, Veeranagauda Y, Karegoudar TB, Sahin O, Mausezahl I, Kabelitz N, Kappelmeyer U, Heipieper HJ (2005) Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles 9:163–168

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy metal resistance. Appl Microbiol Biotechnol 51(6):730–750

    Article  CAS  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    Article  CAS  Google Scholar 

  • Pollmann K, Raff J, Merroun M, Fahmy K, Selenska-Pobell S (2006) Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol Adv 24:58–68

    Article  CAS  Google Scholar 

  • SABS (South African Bureau of Standards) (2005) South African National Standard: Drinking Water, 6th edn. SANS 241, Pretoria

    Google Scholar 

  • Sari A, Uluozlu OD, Tuzen M (2011) Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass. Chem Eng J 167(1):155–161

    Article  CAS  Google Scholar 

  • Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 1:1–17

    Article  Google Scholar 

  • Schmidt A, Haferburg G, Sineriz M, Merten D, Buchel G, Kothe E (2005) Heavy metal resistance mechanisms in Actinobacteria for survival in AMD contaminated soils. Chemi Erde 65:131–144

    Article  CAS  Google Scholar 

  • Sensfuss C, Schlegel HG (1988) Plasmid pMOL28-encoded resistance to nickel is due to specific efflux. FEMS Microbiol Lett 55:295–298

    Article  CAS  Google Scholar 

  • Siddiqui RA, Benthin K, Schlegel HG (1989) Cloning of pMOL28-encoded nickel resistance genes and expression of the genes in Alcaligenes eutrophus and Pseudomonas spp. J Bacteriol 171(9):5071–5078

    CAS  Google Scholar 

  • Silver S, Walderhaug M (1992) Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev 96:195–228

    Google Scholar 

  • Trevors JT, Oddie KM, Belliveau BH (1985) Metal resistance in bacteria. FEMS Microbiol Rev 32:39–54

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun Y-S (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  Google Scholar 

  • Volesky B (2003) Biosorption process simulation tools. Hydrometallurgy 71:179–190

    Article  CAS  Google Scholar 

  • Wang JL (2002) Biosorption of copper (II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochem 37:847–850

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  CAS  Google Scholar 

  • Witte W, Green L, Misra TK, Silver S (1986) Resistance to mercury and to cadmium in chromosomally resistant Staphylococcus aureus. Antimicrob Agents Chemother 29:663–669

    Article  CAS  Google Scholar 

  • Xue G-P, Johnson JS, Dalrymple BP (1999) High osmolarity improves the electro-transformation of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Methods 34:183–191

    Article  CAS  Google Scholar 

  • Yahaya YA, Mashitah MD, Bhatia S (2009) Biosorption of copper (II) onto immobilized cells of Pycnopurus sanguineus from aqueous solution: equilibrium and kinetic studies. J Hazard Mater 161:89–195

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the sponsor from the North-West University and the National Research Foundation (NRF) in South Africa. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and therefore the NRF does not accept any liability in regard thereto. The authors are also grateful to Professor TG Barnard of the Water and Health Research Centre of the University of Johannesburg for providing the facilities, Dr C Grosse of the Institut fur Biologie/Mikrobiologie of Martin-Luther-Universitat Halle-Wittenberg in Germany for providing the plasmid pECD312; CF van der Merwe and A Hall of the Laboratory for Microscopy and Microanalysis of the University of Pretoria for the TEM analysis. The NRF and Commonwealth for sponsoring through academic scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvis Fosso-Kankeu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fosso-Kankeu, E., Mulaba-Bafubiandi, A.F., Piater, L.A. et al. Cloning of the cnr operon into a strain of Bacillaceae bacterium for the development of a suitable biosorbent. World J Microbiol Biotechnol 32, 114 (2016). https://doi.org/10.1007/s11274-016-2069-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2069-5

Keywords

Navigation