Skip to main content
Log in

Genetic characterization of Microcystis aeruginosa isolates from Portuguese freshwater systems

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cyanobacteria are microorganisms that pose a serious threat to the aquatic waterways through the production of dense blooms under eutrophic conditions and the release of toxic secondary metabolites—cyanotoxins. Within cyanobacteria, the colonial planktonic Microcystis aeruginosa is widely distributed in both fresh and brackish aquatic environments throughout the world being frequently observed in the Portuguese water systems. Apart from the well-established distribution of M. aeruginosa in Portugal, knowledge of its genetic diversity and population structure is unknown. Therefore, in this study twenty-seven strains were obtained from the North, Centre and South regions of Portugal and were subjected to extensive phylogenetic analyses using simultaneously four distinct genetic markers (16S rRNA, 16S-23S ITS, DNA gyrase subunit ß and cell division protein (ftsZ)) encompassing in total 2834 bp. With this work we characterized the phylogenetic relationship among the Portuguese strains, with the southern strains showing higher genetic structure relatively to the North and Centre strains. A total of fifteen genotypes were determined for M. aeruginosa in Portuguese water systems revealing a high genetic diversity. This is also the first study to report geographic variation on the population structure of the Portuguese M. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bittencourt-Oliveira MC, Oliveira MC, Bolch CJS (2001) Genetic variability of Brazilian strains of the Microcystis aeruginosa complex (Cyanobacteria/Cyanophyceae) using the phycocyanin intergenic spacer and flanking regions (cpcBA). J Phycol 37:810–818

    Article  CAS  Google Scholar 

  • Boyer SL, Flechtner VR, Johansen JR (2001) Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in Cyanobacteria. Mol Biol Evol 18(6):1057–1069

    Article  CAS  Google Scholar 

  • Carmichael W (1992) Cyanobacteria secondary metabolites—the cyanotoxins. J Appl Bacteriol 72:445–459

    Article  CAS  Google Scholar 

  • Carmichael WW, Liu R (2006) Cyanobacteria toxins in the Salton Sea. Saline Syst 2(5):1–13

    Google Scholar 

  • Fox GE, Wisotzkey JD, Jurtshuk JRP (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Evol Microbiol 42(1):166–170

    CAS  Google Scholar 

  • Haande S, Ballot A, Rohrlack T, Fastner J, Wiedner C, Edvardsen B (2007) Diversity of Microcystis aeruginosa strains (Chroococcales, Cyanobacteria) from East-African water bodies. Arch Microbiol 188:15–25

    Article  CAS  Google Scholar 

  • Haande S, Rohrlack T, Ballot A, Røberg K, Skulberg R, Beck M, Wiedner C (2008) Genetic characterisation of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from Africa and Europe. Harmful Algae 7:692–701

    Article  CAS  Google Scholar 

  • Iteman I, Rippka R, Tandeau de Marsac N, Herdman M (2000) Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria. Microbiology 146:1275–1286

    Article  CAS  Google Scholar 

  • Janse I, Kardinaal WEA, Meima M, Fastner J, Visser PM, Zwart G (2004) Toxic and nontoxic Microcystis colonies in natural populations can be differentiated on the basis of rRNA gene internal transcribed spacer diversity. Appl Environ Microbiol 70(7):3979–3987

    Article  CAS  Google Scholar 

  • Jochimsen EM, Carmichael WW, An JS, Cardo DM, Cookson ST, Holmes CE, Antunes MB, de Melo Filho DA, Lyra TM, Barreto VS, Azevedo SM, Jarvis WR (1998) Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N Engl J Med 338:873–878

    Article  CAS  Google Scholar 

  • Komárek J, Anagnostidis K (1998) Cyanoprokaryota. 1. Teil: Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, 19/1. Spektrum Akademischer Verlag, Heidelberg, 548 pp

  • Komárek J, Komárková J (2002) Review of the European Microcystis-morphospecies (Cyanoprokaryotes) from nature. Czech Phycol Olomouc 2:1–24

    Google Scholar 

  • Kondo R, Kagiya G, Hiroishi S, Watanabe M (2000) Genetic typing of a bloom-forming cyanobacterial genus Microcystis in Japan using 16S rRNA gene sequence analysis. Plankton Biol Ecol 47(1):1–6

    Google Scholar 

  • Kotai J (1972) Instructions for preparation of modified nutrient solution Z8 for algae. Norwegian Institute for Water Research B-11769, Blindern, Oslo, p 5

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace M, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23(21):2947–2948

    Article  CAS  Google Scholar 

  • Martin DP, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262

    Article  CAS  Google Scholar 

  • Martins J, Saker ML, Moreira C, Welker M, Fastner J, Vasconcelos VM (2009) Peptide diversity in strains of the cyanobacterium Microcystis aeruginosa isolated from Portuguese water supplies. Appl Microbiol Biotechnol 82(5):951–961

    Article  CAS  Google Scholar 

  • Moreira C, Fathalli A, Vasconcelos V, Antunes A (2011) Genetic diversity and structure of the invasive toxic cyanobacterium Cylindrospermopsis raciborskii. Curr Microbiol 62(5):1590–1595

    Article  CAS  Google Scholar 

  • Neilan BA, Jacobs D, Del Dot T, Blackall LL, Hawkins PR, Cox PT, Goodman AE (1997) rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697

    Article  CAS  Google Scholar 

  • Otsuka S, Suda S, Li R, Watanabe M, Oyaizu H, Matsumoto S, Watanabe MM (1998) 16S rDNA sequences and phylogenetic analyses of Microcystis strains with and without phycoerythrin. FEMS Microbiol Lett 167:119–124

    Article  Google Scholar 

  • Otsuka S, Suda S, Li R, Watanabe M, Oyaizu H, Matsumoto S, Watanabe MM (1999) Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiol Lett 172:15–21

    Article  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  Google Scholar 

  • Ramette A, Tiedje JM (2007) Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb Ecol 53(2):197–207

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  Google Scholar 

  • Seo PS, Yokota A (2003) The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. J Gen Appl Microbiol 49:191–203

    Article  CAS  Google Scholar 

  • Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (Eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring, and management, world health organization, Routledge, London, pp 41–111

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland, Massachusetts

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 40. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Tanabe Y, Kaya K, Watanabe M (2004) Evidence for recombination in the microcystin synthetase (mcy) genes of toxic cyanobacteria Microcystis spp. J Mol Evol 58:633–641

    Article  CAS  Google Scholar 

  • Tanabe Y, Kasai F, Watanabe MM (2007) Multilocus sequence typing reveals high genetic diversity and clonal population structure of the toxic cyanobacterium Microcystis aeruginosa. Microbiology 153:3695–3703

    Article  CAS  Google Scholar 

  • Tanabe Y, Sano T, Kasai F, Watanabe MM (2009) Recombination, cryptic clades and neutral molecular divergence of the microcystin synthetase (mcy) genes of toxic cyanobacterium Microcystis aeruginosa. BMC Evol Biol 9:115. doi:10.1186/1471-21-48-9-115

    Article  Google Scholar 

  • Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC 7806: an integrated peptidepolyketide synthetase system. Chem Biol 7:753–764

    Article  CAS  Google Scholar 

  • Valério E (2008) Molecular approaches in cyanobacteria: from detection and diversity to DNA-based biosensors. Dissertation, University of Lisbon, Portugal

  • van Gremberghe I, Leliaert F, Mergeay J, Vanormelingen P, Van der Gucht K, Debeer A-E, Lacerot G, De Meester L, Vyverman W (2011) Lack of phylogeographic structure in the freshwater Cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS One 6(5):e19561. doi:10.1371/journal.pone.0019561

    Article  Google Scholar 

  • Vasconcelos V (1995) Ph. D. thesis. University of Porto, Portugal

  • Vasconcelos VM (2001) Toxic freshwater cyanobacteria and their toxins in Portugal. In: Chorus (ed) Cyanotoxins—occurrence, effects, controlling factors. Springer, Heidelberg, pp 64–69

    Google Scholar 

  • Vasconcelos V, Sivonen K, Evans WR, Carmichael WW, Namikoshi M (1995) Isolation and characterization of microcystins (heptapeptide hepatotoxins) from Portuguese strains of Microcystis aeruginosa Kutz. Emed Elekin. Arch Hydrobiol 134:295–305

    CAS  Google Scholar 

  • WHO (1998) Cyanobacterial toxins: microcystin-LR. Guideline for drinking-water quality. Addendum to Volume 2. World Health Organization, Geneva

  • Wilson AE, Sarnelle O, Neilan BA, Salmon TP, Gehringer MM, Hay ME (2005) Genetic variation of the bloom-forming Cyanobacterium Microcystis aeruginosa within and among lakes: implications for harmful algal blooms. Appl Environ Microbiol 71(10):6126–6133

    Article  CAS  Google Scholar 

  • Wu Z, Shi J, Xiao P, Liu Y, Li R (2011) Phylogenetic analysis of two cyanobacterial genera Cylindrospermopsis and Raphidiopsis based on multi-gene sequences. Harmful Algae 10:419–425

    Article  CAS  Google Scholar 

  • Žegura B, Štraser A, Filipič M (2011) Genotoxicity and potential carcinogenicity of cyanobacterial toxins—a review. Mutat Res 727(1–2):16–41

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Portuguese Fundação para a Ciência e a Tecnologia (FCT) for the PhD fellowship to Cristiana Moreira (Ref. SFRH/BD/47164/2008). Agostinho Antunes was partially supported by the Strategic Funding UID/Multi/04423/2013 through national funds provided by FCT and European Regional Development Fund (ERDF) in the framework of the program PT2020 and the FCT project PTDC/AAG-GLO/6887/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostinho Antunes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, C., Vasconcelos, V. & Antunes, A. Genetic characterization of Microcystis aeruginosa isolates from Portuguese freshwater systems. World J Microbiol Biotechnol 32, 118 (2016). https://doi.org/10.1007/s11274-016-2063-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2063-y

Keywords

Navigation