Skip to main content
Log in

Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities

  • REVIEW
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nanoparticles, the elementary structures of nanotechnology, are important materials for fundamental studies and variety of applications. The different sizes and shapes of these materials exhibit unique physical and chemical properties than their bulk materials. There is a great interest in obtaining well-dispersed, ultrafine, and uniform nanoparticles to delineate and utilize their distinct properties. Nanoparticle synthesis can be achieved through a wide range of materials utilizing a number of methods including physical, chemical, and biological processes with various precursors from liquids and solids. There is a growing need to prepare environmentally friendly nanoparticles that do not produce toxic wastes in their process synthesis protocol. This kind of synthesis can be achieved by green environment benign processes, which happen to be mostly of a biological nature. Microorganisms are one of the most attractive and simple sources for the synthesis of different types of nanoparticles. This review is an attempt to provide the up-to-date information on current status of nanoparticle synthesis by different types of microorganisms such as fungi, yeast, bacteria, cyanobacteria, actinomycete, and algae. The probable biosynthesis mechanism and conditions for size/shape control are described. Various applications of microbially synthesized nanoparticles are summarized. They include antibacterial, antifungal, anticancer, larvicidal, medical imaging, biosensor, and catalytic applications. Finally, limitations and future prospects for specific research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63(15):1231–1234

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124(41):12108–12109

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surface B 28:313–318

    Article  CAS  Google Scholar 

  • Ahmad A, Satyajyoti S, Khan MI, Rajiv K, Ramani R, Srinivas V, Murali S (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003c) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553

    Article  CAS  Google Scholar 

  • Albert VDW, Marcel M, Willem N, Alexander JBZ, Johannes L (1997) Electrokinetic potential of bacterial cells. Langmuir 13:165–171

    Article  Google Scholar 

  • Apte M, Sambre D, Gaikawad S, Joshi S, Bankar A, Kumar AR, Zinjarde S (2013) Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express 3(1):32

    Article  CAS  Google Scholar 

  • Azim A, Davood Z, Ali F, Mohammad RM, Dariush N, Shahram T, Majid M, Nasim B (2009) Synthesis and characterization of gold nanoparticles by tryptophane. Am J Appl Sci 6:691–695

    Article  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Shakir M, Fatma T, Varma A, Prasad R et al (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 31(42):11605–11612

    Article  CAS  Google Scholar 

  • Bai HJ, Zhang ZM, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol Lett 28(14):1135–1139

    Article  CAS  Google Scholar 

  • Bai HJ, Zhang ZM, Guo Y, Yang GE (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloid Surface B 70(1):142–146

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14(22):3303–3305

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15(26):2583–2589

    Article  CAS  Google Scholar 

  • Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 128:11958–11963

    Article  CAS  Google Scholar 

  • Banu A, Rathod V (2011) Synthesis and characterization of silver nanoparticles by Rhizopus stolonier. Int J Biomed Adv Res 2(5):148–158

    Article  Google Scholar 

  • Bao H, Hao N, Yang Y, Zhao D (2010a) Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res 3(7):481–489

    Article  CAS  Google Scholar 

  • Bao H, Lu Z, Cui X, Qiao Y, Guo J, Anderson JM, Li CM (2010b) Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater 6(9):3534–3541

    Article  CAS  Google Scholar 

  • Bhainsa KC, D’souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloid Surface B 47(2):160–164

    Article  CAS  Google Scholar 

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sastry M et al (2006) Extracellular biosynthesis of magnetite using fungi. Small 2(1):135–141

    Article  CAS  Google Scholar 

  • Bhimba BV, Gurung S, Nandhini SU (2015) Silver nanoparticles synthesized from marine fungi Aspergillus oryzae. Int J Chem Tech Res 7(1):68–72

    Google Scholar 

  • Blackmore RP (1982) Magnetotactic bacteria. Annu Rev Microbiol 36:217–238

    Article  Google Scholar 

  • Borase HP, Salunke BK, Salunkhe RB, Patil CD, Hallsworth JE, Kim BS, Patil SV (2014) Plant extract: a promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. Appl Biochem Biotech 173(1):1–29

    Article  CAS  Google Scholar 

  • Bruins RM, Kapil S, Oehme SW (2000) Microbial resistance to metals in the environment. Ecotox Environ Safe 45:198–207

    Article  CAS  Google Scholar 

  • Castro L, Blázquez ML, Muñoz JA, González F, Ballester A (2013) Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol 7(3):109–116

    Article  CAS  Google Scholar 

  • Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41:1307–1311

    Article  CAS  Google Scholar 

  • Correa-Llantén DN, Muñoz-Ibacache SA, Castro ME, Muñoz PA, Blamey JM (2013) Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microb Cell Fact 12(1):1–6

    Article  CAS  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Winge DR et al (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  • De Windt W, Peter A, Willy V (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microb 7:314–325

    Article  Google Scholar 

  • Dehnad A, Hamedi J, Derakhshan-Khadivi F, Abusov R (2015) Green synthesis of gold nanoparticles by a metal resistant isolated from gold mine. IEEE Trans Nanobiosci 14(4):393–396

    Article  Google Scholar 

  • Delattre C, Pierre G, Gardarin C, Traikia M, Elboutachfaiti R, Isogai A, Michaud P (2015) Antioxidant activities of a polyglucuronic acid sodium salt obtained from TEMPO-mediated oxidation of xanthan. Carbohyd Polym 116:34–41

    Article  CAS  Google Scholar 

  • Devi LS, Joshi SR (2015) Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J Microsc Ultrastruct 3(1):29–37

    Article  Google Scholar 

  • Dhanasekar NN, Rahul G, Narayanan KB, Raman G, Sakthivel N (2015) Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J Microbiol Biotechnol 25(7):1129–1135

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD, De Souza GI, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3(2):203–208

    Article  CAS  Google Scholar 

  • Elbeshehy EK, Elazzazy AM, Aggelis G (2015) Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front Microbiol 6:453

    Article  Google Scholar 

  • Elboutachfaiti R, Delattre C, Petit E, Michaud P (2011) Polyglucuronic acids: structures, functions and degrading enzymes. Carbohyd Polym 84(1):1–13

    Article  CAS  Google Scholar 

  • Elchinger PH, Delattre C, Faure S, Roy O, Badel S, Bernardi T, Taillefumier C, Michaud P (2015) Immobilization of proteases on chitosan for the development of films with anti-biofilm properties. Int J Biol Macromol 72:1063–1068

    Article  CAS  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5(4):382–386

    CAS  Google Scholar 

  • Gericke M, Pinches A (2006a) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006b) Microbial production of gold nanoparticles. Gold Bull 39:22–28

    Article  CAS  Google Scholar 

  • Ghazwani AA (2015) Biosynthesis of silver nanoparticles by Aspergillus niger, Fusarium oxysporum and Alternaria solani. Afr J Biotechnol 14(26):2170–2174

    Article  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hassan AA, Oraby NH, El-Dahshan EME, Ali MA (2015) Antimicrobial potential of iron oxide nanoparticles in control of some causes of microbial skin affection in cattle. Eur J Acad Essays 2(6):20–31

    Google Scholar 

  • He S, Zhang Y, Guo Z, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol Prog 24(2):476–480

    Article  CAS  Google Scholar 

  • He W, Zhou W, Wang Y, Zhang X, Zhao H, Li Z, Yan S (2009) Biomineralization of iron phosphate nanoparticles in yeast cells. Mat Sci Eng C 29(4):1348–1350

    Article  CAS  Google Scholar 

  • He FJ, Li ZH, Gao F, Yang Z (2013) Extracellular biosynthesis of Ag nanoparticles by commercial baker’s yeast. Adv Mat Res 785:370–373

    Article  CAS  Google Scholar 

  • Holmes JD, Smith PR, Evans-Gowing R, Richardson DJ, Russell DA, Sodeau JR (1995) Energy-dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch Microbiol 163(2):143–147

    Article  CAS  Google Scholar 

  • Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A 67:1003–1006

    Article  CAS  Google Scholar 

  • Husseiny SM, Salah TA, Anter HA (2015) Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef Univ J Basic Appl Sci 4(3):225–231

    Article  Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2008) Yeast mediated synthesis of silver nanoparticles. Int J Nanosci Nanotechnol 4(1):17–22

    Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2009) Synthesis of TiO2 nanoparticles using microorganisms. Colloid Surface B 71(2):226–229

    Article  CAS  Google Scholar 

  • Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver-carbon composite materials for optically functional thin film coatings. Adv Mater 12:407–409

    Article  CAS  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloid Surface B 71:133–137

    Article  CAS  Google Scholar 

  • Kim Y, Lee Y, Roh Y (2015) Microbial synthesis of iron sulfide (FeS) and iron carbonate (FeCO3) nanoparticles. J Nanosci Nanotechnol 15(8):5794–5797

    Article  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20

    Article  Google Scholar 

  • Kollár R, Reinhold BB, Petráková E, Yeh HJ, Ashwell G, Drgonová J, Kapteyn JC, Klis FM, Cabib E (1997) Architecture of the yeast cell wall β(1 → 6)-glucan interconnects mannoprotein, β(1 → 3)-glucan, and chitin. J Biol Chem 272:17762–17775

    Article  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Uruga T et al (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128(3):648–653

    Article  CAS  Google Scholar 

  • Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78(5):583–588

    Article  CAS  Google Scholar 

  • Kulkarni RR, Shaiwale NS, Deobagkar DN, Deobagkar DD (2015) Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity. Int J Nanomed 10:963

    CAS  Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007a) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  CAS  Google Scholar 

  • Kumar SA, Ayoobul AA, Absar A, Khan MI (2007b) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotechnol 3(2):190–194

    Article  CAS  Google Scholar 

  • Kumar SA, Peter YA, Nadeau JL (2008) Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19:495101

    Article  CAS  Google Scholar 

  • Kumar CG, Poornachandra Y, Chandrasekhar C (2015) Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway). Nanoscale 7(44):18738–18750

    Article  CAS  Google Scholar 

  • Kushwaha A, Singh VK, Bhartariya J, Singh P, Yasmeen K (2015) Isolation and identification of E. coli bacteria for the synthesis of silver nanoparticles: characterization of the particles and study of antibacterial activity. Eur J Exp Biol 5(1):65–70

    Google Scholar 

  • Lee SH, Salunke BK, Kim BS (2014) Sucrose density gradient centrifugation separation of gold and silver nanoparticles synthesized using Magnolia kobus plant leaf extracts. Biotechnol Bioproc E 19(1):169–174

    Article  CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold (I)-thiosulfate and gold (III)-chloride complexes. Langmuir 22(6):2780–2787

    Article  CAS  Google Scholar 

  • Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006b) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)-chloride complex. Environ Sci Technol 40(20):6304–6309

    Article  CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2007) Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial biomass with a palladium (II) chloride complex. Langmuir 23(17):8982–8987

    Article  CAS  Google Scholar 

  • Lipke PN, Ovalle R (1998) Cell wall architecture in yeast: new structure and new challenges. J Bacteriol 180:3735–3740

    CAS  Google Scholar 

  • Lovley DR, Stolz JF, Nord GL, Phillips EJ (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330(6145):252–254

    Article  CAS  Google Scholar 

  • Maggy FL, Michael EF, Gordon S (2007) Synthesis of palladium nanoparticles by reaction of Filamentous cyanobacterial biomass with a palladium(II) chloride complex. Langmuir 23:8982–8987

    Article  CAS  Google Scholar 

  • Malarkodi C, Rajeshkumar S, Paulkumar K, Vanaja M, Jobitha GDG, Annadurai G (2013) Bactericidal activity of bio mediated silver nanoparticles synthesized by Serratia nematodiphila. Drug Invention Today 5(2):119–125

    Article  CAS  Google Scholar 

  • Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim SK (2013) Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. BioMed Res Int 2013:287638

    Google Scholar 

  • Mann S (1996) Biomimetic materials chemistry. Wiley-VCH, New York

    Google Scholar 

  • Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Manti A, Boi P, Falcioni T, Canonico B, Ventura A, Sisti D, Pianetti A, Balsamo M, Papa S (2008) Bacterial cell monitoring in wastewater treatment plants by flow cytometry. Water Environ Res 80:346–354

    Article  CAS  Google Scholar 

  • Mati-Baouche N, Elchinger PH, de Baynast H, Pierre G, Delattre C, Michaud P (2014) Chitosan as an adhesive. Eur Polym J 60:198–212

    Article  CAS  Google Scholar 

  • Mazumdar H, Haloi N (2011) A study on biosynthesis of iron nanoparticles by Pleurotus sp. J Microbiol Biotechnol Res 1(3):39–49

    CAS  Google Scholar 

  • Mie R, Samsudin MW, Din LB, Ahmad A, Ibrahim N, Adnan SNA (2014) Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. Int J Nanomed 9:121–127

    Article  CAS  Google Scholar 

  • Mithila A, Swanand J, Ameeta RK, Smita Z, Sulabha K (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63:1231–1234

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517

    Article  CAS  Google Scholar 

  • Mokhtari N, Daneshpajouh S, Seyedbagheri S, Atashdehghan R, Abdi K, Sarkar S, Shahverdi AR et al (2009) Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: the effects of visible-light irradiation and the liquid mixing process. Mat Res Bull 44(6):1415–1421

    Article  CAS  Google Scholar 

  • Mourato A, Gadanho M, Lino AR, Tenreiro R (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl 2011:546074

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Sastry M et al (2001a) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Inter Edit 40(19):3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Sastry M et al (2001b) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3(5):461–463

    Article  CAS  Google Scholar 

  • Murali S, Ahmad A, Khan MI, Rajiv K (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    Google Scholar 

  • Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresource Technol 101(22):8772–8776

    Article  CAS  Google Scholar 

  • Nair V, Sambre D, Joshi S, Bankar A, Ravi Kumar A, Zinjarde S (2013) Yeast-derived melanin mediated synthesis of gold nanoparticles. J Bionanoscience 7(2):159–168

    Article  CAS  Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed Nanotechnol Biol Med 5(4):452–456

    Article  CAS  Google Scholar 

  • Narges M, Shahram D, Seyedali S, Reza A, Khosro A, Saeed S, Sara M, Hamid RS, Ahmad RS (2009) Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: the effects of visible-light irradiation and the liquid mixing process. Mater Res Bull 44:1415–1421

    Article  CAS  Google Scholar 

  • Pavani KV, Kumar NS, Sangameswaran BB (2012) Synthesis of lead nanoparticles by Aspergillus species. Pol J Microbiol 61(1):61–63

    CAS  Google Scholar 

  • Pavani T, Rao KV, Chakra CS, Prabhu (2015) Microbial synthesis of ZnO nanoparticles by Yeast: Sacchromyces cerevisiae. J Nanosci Nanoeng Appl 5(2):1–5

    CAS  Google Scholar 

  • Pereira L, Dias N, Carvalho J, Fernandes S, Santos C, Lima N (2014) Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum. J Appl Microbiol 117(6):1601–1613

    Article  CAS  Google Scholar 

  • Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloid Surface B 74(1):309–316

    Article  CAS  Google Scholar 

  • Polte J (2015) Fundamental growth principles of colloidal metal nanoparticles—a new perspective. CrystEngComm 17(36):6809–6830

    Article  CAS  Google Scholar 

  • Prabavathy D, Niveditha R, Vaishnavie R (2015) Antimicrobial activity of silver nanoparticles synthesized by endophytic Aspergillus sp isolated from Justicia beddomei. J Chem Pharma Res 7(3):784–788

    CAS  Google Scholar 

  • Prasad K, Jha AK, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2(5):248–250

    Article  CAS  Google Scholar 

  • Priyabrata M, Ahmad A, Deendayal M, Satyajyoti S, Sudhakar RS, Mohammad IK, Renu P, Ajaykumar PV, Mansoor A, Rajiv K, Murali S (2001) Fungus mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Pum D, Sleytr UB (1999) The application of bacterial S-layers in molecular nanotechnology. Trends Biotechnol 17:8–12

    Article  CAS  Google Scholar 

  • Roh Y, Lauf RJ, McMillan AD, Zhang C, Rawn CJ, Bai J, Phelps TJ (2001) Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Commun 118:529–534

    Article  CAS  Google Scholar 

  • Roy K, Sarkar CK, Ghosh CK (2014) Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Appl Nanosci 5(8):953–959

    Article  CAS  Google Scholar 

  • Saifuddin N, Wong CW, Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Eur J Chem 6(1):61–70

    CAS  Google Scholar 

  • Salunke BK, Sawant SS, Lee SI, Kim BS (2015) Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 99(13):5419–5427

    Article  CAS  Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011a) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109(3):823–831

    Article  Google Scholar 

  • Salunkhe RB, Patil SV, Salunke BK, Patil CD, Sonawane AM (2011b) Studies on silver accumulation and nanoparticle synthesis by Cochliobolus lunatus. Appl Biochem Biotechnol 165(1):221–234

    Article  CAS  Google Scholar 

  • Salvadori MR, Ando RA, do Nascimento CAO, Corrêa B (2014) Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS ONE 9(1):e87968

    Article  CAS  Google Scholar 

  • Salvadori MR, Ando RA, Nascimento CAO, Corrêa B (2015) Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. PLoS ONE 10(6):e0129799

    Article  Google Scholar 

  • Sangappa M, Thiagarajan P (2015) Combating drug resistant pathogenic bacteria isolated from clinical infections, with silver oxide nanoparticles. Indian J Pharm Sci 77(2):151–155

    Article  CAS  Google Scholar 

  • Sanghi R, Verma P, Puri S (2011) Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Adv Chem Eng Sci 1(3):154–162

    Article  CAS  Google Scholar 

  • Saravanan M, Amelash T, Negash L, Gebreyesus A, Selvaraj A, Rayar V, Deekonda K (2013) Extracellular biosynthesis and biomedical application of silver nanoparticles synthesized from baker’s yeast. Int J Res Pharm Biomed Sci 4:822–828

    CAS  Google Scholar 

  • Sarkar R, Kumbhakar P, Mitra AK (2010) Green synthesis of silver nanoparticles and its optical properties. Dig J Nanomat Bios 5(2):491–496

    Google Scholar 

  • Senapati S, Mandal D, Ahmad A, Khan MI, Sastry M, Kumar R (2004) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Indian J Phys 78A:101–105

    CAS  Google Scholar 

  • Shan GB, Xing JM, Zhang HY, Liu HZ (2005) Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol 71:4497–4502

    Article  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13(7):1822–1826

    Article  CAS  Google Scholar 

  • Shi C, Zhu N, Cao Y, Wu P (2015) Biosynthesis of gold nanoparticles assisted by the intracellular protein extract of Pycnoporus sanguineus and its catalysis in degradation of 4-nitroaniline. Nanoscale Res Lett 10(1):1–8

    Article  CAS  Google Scholar 

  • Simkiss K, Wilbur KM (1989) Biomineralization. Academic, New York

    Google Scholar 

  • Sintubin L, Verstraete W, Boon N (2012) Biologically produced nanosilver: current state and future perspectives. Biotechnol Bioeng 109(10):2422–2436

    Article  CAS  Google Scholar 

  • Soltani NM, Shahidi BGH, Khaleghi N (2015) Biosynthesis of gold nanoparticles using streptomyces fulvissimus isolate. Nanomed J 2(2):153–159

    Google Scholar 

  • Stegenga RW, Al-Azawi S, Bandyopadhyay D, Bandyopadhyay K (2011) Biosynthesis of gold nanoparticles by Saccharomyces cerevisiae. FASEB J 25:726–728

    Google Scholar 

  • Sudha SS, Rajamanickam K, Rengaramanujam J (2013) Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J Exp Biol 51(5):393–399

    CAS  Google Scholar 

  • Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460):1989–1992

    Article  CAS  Google Scholar 

  • Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta 114:144–147

    Article  CAS  Google Scholar 

  • Tapan KS, Andrey LR (2009) Nonspherical noble metal nanoparticles: colloid chemical synthesis and morphology control. Adv Mater 21:1–24

    Google Scholar 

  • Tavernier ML, Petit E, Delattre C, Courtois B, Courtois J, Strancar A, Michaud P (2008) Production of oligoglucuronans using a monolithic enzymatic microreactor. Carbohyd Res 343(15):2687–2691

    Article  CAS  Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei. Insciences J 1(1):65–79

    Article  CAS  Google Scholar 

  • Vanaja M, Rajeshkumar S, Paulkumar K, Gnanajobitha G, Chitra K, Malarkodi C, Annadurai G (2015) Fungal assisted intracellular and enzyme based synthesis of silver nanoparticles and its bactericidal efficiency. Int Res J Pharm Biosci 2(3):8–19

    Google Scholar 

  • Varshney R, Mishra AN, Bhadauria S, Gaur MS (2009) A novel microbial route to synthesize silver nanoparticles using fungus Hormoconis resinae. Dig J Nanomater Bios 4:349–355

    Google Scholar 

  • Vilchis-Nestor AR, Sánchez-Mendieta V, Camacho-López MA, Gómez-Espinosa RM, Camacho-López MA, Arenas-Alatorre JA (2008) Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mat Lett 62(17):3103–3105

    Article  CAS  Google Scholar 

  • Wang X, Low XC, Hou W, Abdullah LN, Toh TB, Mohd Abdul Rashid M, Chow EKH et al (2014) Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells. ACS Nano 8(12):12151–12166

    Article  CAS  Google Scholar 

  • Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE (2002) Bioaccumulation of palladium by Desulfovibrio desulfuricans. J Chem Technol Biotechnol 77(5):593–601

    Article  CAS  Google Scholar 

  • Zheng B, Qian L, Yuan H, Xiao D, Yang X, Paau MC, Choi MM (2010a) Preparation of gold nanoparticles on eggshell membrane and their biosensing application. Talanta 82(1):177–183

    Article  CAS  Google Scholar 

  • Zheng D, Hu C, Gan T, Dang X, Hu S (2010b) Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles. Sensor Actuat B Chem 148(1):247–252

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF-2012R1A1A2006375 and NRF-2013R1A2A2A01067117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beom Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salunke, B.K., Sawant, S.S., Lee, SI. et al. Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World J Microbiol Biotechnol 32, 88 (2016). https://doi.org/10.1007/s11274-016-2044-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2044-1

Keywords

Navigation