Skip to main content
Log in

Construction Biotechnology: a new area of biotechnological research and applications

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achal V, Mukherjee A, Reddy MS (2010) Microbial concrete: way to enhance the durability of building structures. J Mater Civil Eng 23:730–734

    Google Scholar 

  • Achal V, Mukherjee A, Reddy MS (2011) Effect of calcifying bacteria on permeation properties of concrete structures. J Ind Microbiol Biotechnol 38:1229–1234

    CAS  Google Scholar 

  • Aziz MA, Koe LCC (1990) Potential utilization of sewage sludge. Water Sci Technol 22:277–285

    CAS  Google Scholar 

  • Bajpai PK, Meena D, Vatsa S, Singh I (2013) Tensile behavior of nettle fiber composites exposed to various environments. J Nat Fibers 10:244–256

    CAS  Google Scholar 

  • Balaguru P (1994) Contribution of fibers to crack reduction of cement composites during the initial and final settling period. ACI Mater J 91:280–288

    Google Scholar 

  • Bang SS, Galinat JK, Ramakrishnan V (2001) Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb Technol 28:404–409

    CAS  Google Scholar 

  • Bang S, Min SH, Bang SS (2011) Application of microbiologically induced soil stabilization technique for dust suppression. Int J Geo-Eng 3:27–37

    Google Scholar 

  • Bergdale TE, Pinkelman RJ, Hughes SR, Zambelli B, Ciurli S, Bang SS (2012) Engineered biosealant strains producing inorganic and organic biopolymers. J Biotechnol 161:181–189

    CAS  Google Scholar 

  • Bernardi D, DeJong JT, Montoya BM, Martinez BC (2014) Bio-bricks: biologically cemented sandstone bricks. Constr Build Mater 55:462–469

    Google Scholar 

  • Burbank MB, Weaver TJ, Green TL, Williams BC, Crawford RL (2011) Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiol J 28:301–312

    Google Scholar 

  • Burbank MB, Weaver TJ, Williams BC, Crawford RL (2012a) Urease activity of ureolytic bacteria isolated from six soils in which calcite was precipitated by indigenous bacteria. Geomicrobiol J 29:389–395

    CAS  Google Scholar 

  • Burbank M, Weaver T, Lewis R, Williams T, Williams B, Crawford W (2012b) Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria. J Geotech Geoenviron 139:928–936

    Google Scholar 

  • Castanier S, Le Métayer-Levrel G, Orial G, Loubière JF, Perthuisot JP (2000) Bacterial carbonatogenesis and applications to preservation and restoration of historic property. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art. The Role of Microbial Communities in the Degradation and Protection of Cultural Heritage, Kluwer Academic/Plenum Publisher, New York, pp 203–218

    Google Scholar 

  • Charles P, Edwards P (eds) (2015) Environmental good practice on site guide (C741), 4th edn. CIRIA, London

    Google Scholar 

  • Cheilas A, Katsioti M, Georgiades A, Malliou O, Teas C, Haniotakis E (2007) Impact of hardening conditions on to stabilized/solidified products of cement–sewage sludge–jarosite/alunite. Cement Concrete Compos 29:263–269

    CAS  Google Scholar 

  • Christians S, Jose J, Schäfer U, Kaltwasser H (1991) Purification and subunit determination of the nickel-dependent Staphylococcus xylosus urease. FEMS Microbiol Lett 80:271–275

    CAS  Google Scholar 

  • Chu J, Ivanov V, He J, Naeimi M, Li B, Stabnikov V (2011) Development of microbial geotechnology in Singapore. In: Han J, Alzamora DE (eds) Geo-Frontiers 2011: advances in geotechnical engineering. ASCE, New York, pp 4070–4078

    Google Scholar 

  • Chu J, Stabnikov V, Ivanov V (2012) Microbially induced calcium carbonate precipitation on surface or in the bulk of soil. Geomicrobiol J 29:1–6

    Google Scholar 

  • Chu J, Ivanov V, Stabnikov V (2013a) Microbial method for construction of aquaculture pond in sand. Géotechnique 63:871–875

  • Chu J, He J, Ivanov V (2013b) Mitigation of liquefaction of saturated sand using biogas. Geotechnique 63:267–275

  • Chu J, Ivanov V, Naeimi M, Stabnikov V, Liu HL (2014a) Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotechnol 9:277–285

    Google Scholar 

  • Chu J, Ivanov V, He J, Maeimi M (2014b) Use of biogeotechnologies for disaster mitigation. In: Iai S (ed) Geotechnics for catastrophic flooding events. CRC Press, Boca Raton, pp 49–56

    Google Scholar 

  • Cordesman AH (2002) Terrorism, asymmetric warfare, and weapons of mass destruction: defending the U.S. homeland. Praeger Publishers, Westport

    Google Scholar 

  • Cuthbert MO, McMillan LA, Handley-Sidhu S, Riley MS, Tobler DJ, Phoenix VR (2013) A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation. Environ Sci Technol 47:13637–13643

    CAS  Google Scholar 

  • De Muynck W, Cox K, Verstraete W, De Belie N (2008a) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr Build Mater 22:875–885

    Google Scholar 

  • De Muynck WD, Debrouwer D, De Belie ND, Verstraete W (2008b) Bacterial carbonate precipitation improves the durability of cementitious materials. Cement Concrete Res 38:1005–1014

    Google Scholar 

  • De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36:18–136

    Google Scholar 

  • De Muynck W, Verbeken K, De Belie N, Verstraete W (2012) Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. App Microbiol Biotechnol 97:1335–1347

    Google Scholar 

  • DeJong J, Fritzges M, Nusstein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132:1381–1392

    CAS  Google Scholar 

  • DeJong JT, Mortensen BM, Martinez BC, Nelson DC (2010) Bio-mediated soil improvement. Ecol Eng 36:197–210

    Google Scholar 

  • DeJong JT, Soga K, Kavazanjian E et al (2013) Biogeochemical processes and geotechnical applications: progress, opportunities and challenges. Geotechnique 63:287–301

    Google Scholar 

  • Dhami NK, Reddy MS, Mukherjee A (2012) Improvement in strength properties of ash bricks by bacterial calcite. Ecol Eng 39:31–35

    Google Scholar 

  • Dhami NK, Reddy MS, Mukherjee A (2014) Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization. Appl Biochem Biotechnol 172:2552–2561

    CAS  Google Scholar 

  • Dosier GK (2011) Methods for making construction material using enzyme producing bacteria. US Patent 20110262640 A1

  • Ebnesajjad S (ed) (2012) Handbook of biopolymers and biodegradable plastics: properties, processing and applications. Elsevier, Amsterdam

    Google Scholar 

  • Ehrlich HL (1999) Microbes as geologic agents: their role in mineral formation. Geomicrobiol J 16:135–153

    Google Scholar 

  • Eryuruk K, Yang S, Suzuki D, Sakaguchi I, Akatsuka T, Tsuchiya T, Katayama A (2015) Reducing hydraulic conductivity of porous media using CaCO3 precipitation induced by Sporosarcina pasteurii. J Biosci Bioeng 119:331–336

    CAS  Google Scholar 

  • Eseller-Bayat E, Yegian MK, Alshawabkeh A, Gokyer S (2012) Prevention of liquefaction during earthquakes through induced partial saturation in sands. Geotechnical engineering: new horizons. IOS Press, Amsterdam, pp 188–194

    Google Scholar 

  • Faludi G, Dora G, Renner K, Pukánszky B, Móczó J (2013) Biocomposite from polylactic acid and lignocellulosic fibers: structure–property correlations. Carbohydr Polym 92:1767–1775

    CAS  Google Scholar 

  • Fernandes P (2006) Applied microbiology and biotechnology in the conservation of stone culture heritage materials. Appl Microbiol Biotechnol 73:291–296

    CAS  Google Scholar 

  • Ferris FG, Stehmeier LG, Kantzas A, Mourits FM (1996) Bacteriogenic mineral plugging. J Can Pet Technol 35:56–61

    CAS  Google Scholar 

  • Fytili D, Zabaniotou A (2008) Utilization of sewage sludge in EU application of old and new methods—a review. Renew Sustain Energy Rev 12:116–140

    CAS  Google Scholar 

  • Ghosh P, Mandal S, Chattopadhyay BD, Pal S (2005) Use of microorganism to improve the strength of cement mortar. Cement Concrete Res 35:1980–1983

    CAS  Google Scholar 

  • Ghosh P, Mandal S, Pal S, Bandyopadhyaya G, Chattopadhyay BD (2006) Development of bioconcrete material using an enrichment culture of novel thermophilic anaerobic bacteria. Indian J Exp Biol 44:336–339

    CAS  Google Scholar 

  • Ghosh S, Biswas M, Chattopadhyay BD, Mandal S (2009) Microbial activity on the microstructure of bacteria modified mortar. Cement Concrete Compos 31:93–98

    CAS  Google Scholar 

  • Gollapudi UK, Knutson CL, Bang SS, Islam MR (1995) A new method for controlling leaching through permeable channels. Chemosphere 30:695–705

    CAS  Google Scholar 

  • Guo CH, Stabnikov V, Ivanov V (2010) The removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant using ferric and nitrate bioreductions. Bioresour Technol 101:3992–3999

    CAS  Google Scholar 

  • Hamdan N, Kavazanjian E, Rittman BE, Karatas I (2011) Carbonate mineral precipitation for soil improvement through microbial denitrification. In: Han J, Alzamora DA (eds) Geo-Frontiers 2011: advances in geotechnical engineering. American Society of Civil Engineers, Dallas, pp 3925–3934

    Google Scholar 

  • Hammes F, Boon N, de Villiers J, Verstraete W, Siciliano SD (2003) Strain-specific ureolytic microbial calcium carbonate precipitation. Appl Environ Microbiol 69:4901–4909

    CAS  Google Scholar 

  • Harkes MP, van Paassen LA, Booster JL, Whiffin VS, van Loosdrecht MCM (2010) Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol Eng 36:112–117

    Google Scholar 

  • He J, Chu J, Ivanov V (2013) Mitigation of liquefaction of saturated sand using biogas. Geotechnique 63:267–275

    Google Scholar 

  • Huda MS, Drzal LT, Mohanty AK, Misra M (2006) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly (lactic acid) (PLA) composites: a comparative study. Compos Sci Technol 66:1813–1824

    CAS  Google Scholar 

  • Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun 21:117–132

    CAS  Google Scholar 

  • Imai H, Oaki Y (2010) Bioinspired hierarchical crystals. MRS Bull 35:138–144

    CAS  Google Scholar 

  • Ivanov V (2010) Environmental microbiology for engineers. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Ivanov V, Chu J (2008) Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Environ Sci Biotechnol 7:139–153

    CAS  Google Scholar 

  • Ivanov V, Kuang SL, Guo CH, Stabnikov V (2009) The removal of phosphorus from reject water in a municipal wastewater treatment plant using iron ore. J Chem Technol Biotechnol 84:78–82

    CAS  Google Scholar 

  • Ivanov V, Stabnikov V, Hung YT (2012a) Screening and selection of microorganisms for the environmental biotechnology process. In: Hung YT, Wang LK, Shammas NK (eds) Handbook of environment and waste management. Air and water pollution control. World Scientific Publishing Co Inc, Singapore, pp 1137–1149

    Google Scholar 

  • Ivanov V, Chu J, Stabnikov V (2012b) Iron- and calcium-based biogrouts for porous soils. Proc ICE-Construct Mater 167:36–41

    Google Scholar 

  • Ivanov V, Stabnikov V, Guo CH, Stabnikova O, Ahmed Z, Kim IS, Shuy EB (2014) Wastewater engineering applications of BioIronTech process based on the biogeochemical cycle of iron bioreduction and (bio)oxidation. AIMS Environ J 1:53–66

    Google Scholar 

  • Ivanov V, Chu J, Stabnikov V, Li B (2015a) Strengthening of soft marine clay using biocementation. Mar Georesour Geotechnol 33:325–329

    Google Scholar 

  • Ivanov V, Stabnikov V, Ahmed Z, Dobrenko S, Saliuk A (2015b) Production and applications of crude polyhydroxyalkanoate-containing bioplastic from the organic fraction of municipal solid waste. Int J Environ Sci Technol 12:725–738

    CAS  Google Scholar 

  • Ivanov V, Chu J, Stabnikov V (2015c) Basics of Construction Microbial Biotechnology. In: Pacheco-Torgal F, Labrincha JA, Diamanti MV, Chang PY, Lee HK (eds) Biotechnologies and biomimetics for civil engineering. Springer, New York, pp 21–56

    Google Scholar 

  • Jimenez-Lopez C, Jroundi F, Pascolini C, Rodriguez-Navarro C, Piñar-Larrubia G, Rodriguez-Gallego M, González-Muñoz MT (2008) Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. Int Biodeterior Biodegradation 62:352–363

    CAS  Google Scholar 

  • John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364

    CAS  Google Scholar 

  • Katsioti M, Katsiotis N, Rouni G, Bakirtzis D, Loizidou M (2008) The effect of bentonite/cement mortar for the stabilization/solidification of sewage sludge containing heavy metals. Cement Concrete Compos 30:1013–1019

    CAS  Google Scholar 

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotech Adv 28:61–69

    CAS  Google Scholar 

  • Ko HS, Kwon JH, Park SS (2014) Flooring material using poly lactic acid resin and construction methods of the same. US Patent 20140370225

  • Li P, Qu W (2012) Microbial carbonate mineralization as an improvement method for durability of concrete structures. Adv Mat Res 365:280–286

    CAS  Google Scholar 

  • Lin Y, Zhou S, Li F, Lin Y (2012) Utilization of municipal sewage sludge as additives for the production of eco-cement. J Hazard Mater 213–214:457–465

    Google Scholar 

  • Maizatulnisa O, Tan KH, Yusof HM, Halisanni K, Ruzaidi G, Nazarudin ZM, Paridah T, Azlina HN (2013) Effects of multi-walled carbon nanotubes (MWCNTS) on the mechanical and thermal properties of plasticized polylactic acid nanocomposites. Adv Mat Res 812:181–186

    CAS  Google Scholar 

  • Malliou O, Katsioti M, Georgiadis A, Katsiri A (2007) Properties of stabilized/solidified admixtures of cement and sewage sludge. Cement Concrete Compos 29:55–61

    CAS  Google Scholar 

  • Mayer G, Sarikaya M (2002) Rigid biological composite materials: structural examples for biomimetic design. Exp Mech 42:395–403

    CAS  Google Scholar 

  • Mergaert J, Anderson C, Wouters A, Swings J, Kerster K (1992) Biodegradation of polyhydroxyalkanoates. FEMS Microbiol Rev 103:317–322

    CAS  Google Scholar 

  • Mitchell AC, Ferris FG (2005) The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: temperature and kinetic dependence. Geochim Cosmochim Acta 69:4199–4210

    CAS  Google Scholar 

  • Mitchell JK, Santamarina JC (2005) Biological considerations in geotechnical engineering. J Geotech Geoenviron Eng 131:1222–1233

    CAS  Google Scholar 

  • Mizuki T, Kamekura M, DasSarma S, Fukushima T, Usami R, Yoshida Y, Horikoshi K (2004) Ureases of extreme halophiles of the genus Haloarcula with a unique structure of gene cluster. Biosci Biotechnol Biochem 68:397–406

    CAS  Google Scholar 

  • Montoya BM, DeJong JT, Boulanger RW, Wilson DW, Gerhard R, Ganchenko A, Chou JC (2012) Liquefaction mitigation using microbial induced calcite precipitation. GeoCongress 1918–1927

  • Pacheco-Torgal F, Jalali S (2011) Nanotechnology: advantages and drawbacks in the field of construction and building materials. Constr Build Mater 25:582–590

    Google Scholar 

  • Pacheco-Torgal F, Labrincha JA (2013a) Biotech cementitious materials: some aspects of an innovative approach for concrete with enhanced durability. Constr Build Mater 40:1136–1141

    Google Scholar 

  • Pacheco-Torgal F, Labrincha JA (2013b) Biotechnologies and bioinspired materials for the construction industry: an overview. Int J Sustain Eng 7:235–244

    Google Scholar 

  • Parra RR, Medina VF, Conca JL (2009) The use of fixatives for response to a radiation dispersal devise attack—a review of the current (2009) state-of-the-art. J Environ Radioactiv 100:923–934

    CAS  Google Scholar 

  • Pilla S (ed) (2011) Handbook of bioplastics and biocomposites engineering applications. Wiley, New York, p 620

    Google Scholar 

  • Plank J (2004) Application of biopolymers and other biotechnological products in building material. App Microbiol Biotechnol 66:1–9

    CAS  Google Scholar 

  • Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using microorganisms. ACI Mater J 98:3–9

    CAS  Google Scholar 

  • Ramesh BNG, Anitha N, Rani HKR (2010) Recent trends in biodegradable products from biopolymers. Adv Biotechnol 9:30–34

    Google Scholar 

  • Raut SH, Sarode DD, Lele SS (2014) Biocalcification using B. pasteurii for strengthening brick masonry civil engineering structures. World J Microbiol Biotechnol 30:191–200

    CAS  Google Scholar 

  • Ray SS (2012) Polylactide-based bionanocomposites: a promising class of hybrid materials. Acc Chem Res 45:1710–1720

    Google Scholar 

  • Rebata-Landa V, Santamarina JC (2012) Mechanical effects of biogenic nitrogen gas bubbles in soils. J Geotechn Geoenviron Eng 138:128–137

    CAS  Google Scholar 

  • Reddy S, Rao M, Aparna P, Sasikala C (2010) Performance of standard grade bacterial (Bacillus subtilis) concrete. Asian J Civ Eng (Build Housing) 11:43–55

    Google Scholar 

  • Rodríguez NH, Ramírez MS, Varela MTB, Guillem M, Puig J, Larrotcha E, Flores J (2010) Re-use of drinking water treatment plant (DWTP) sludge: characterization and technological behaviour of cement mortars with atomized sludge additions. Cement Concrete Res 40:778–786

    Google Scholar 

  • Roeselers G, Van Loosdrecht MC (2010) Microbial phytase-induced calcium–phosphate precipitation—a potential soil stabilization method. Folia Microbiol 55:621–624

    CAS  Google Scholar 

  • Saba N, Paridah MT, Jawaid M (2015) Mechanical properties of kenaf fibre reinforced polymer composite: a review. Constr Build Mater 76:87–96

    Google Scholar 

  • Sarayu K, Iyer NR, Murthy AR (2014) Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials—a review. Appl Biochem Biotechnol 172:2308–2323

    CAS  Google Scholar 

  • Sarda D, Choonia HS, Sarode DD, Lele SS (2009) Biocalcification by Bacillus pasteuriiurease: a novel application. J Ind Microbiol Biotechnol 36:1111–1115

    CAS  Google Scholar 

  • Sarikaya M (1994) An introduction to biomimetics: a structural viewpoint. Microsc Res Tech 27:360–375

    CAS  Google Scholar 

  • Seagren EA, Aydilek AH (2010) Bioremediated geomechanical processes. In: Mitchell R, Gu JD (eds) Environmental microbiology, 2nd edn. Wiley, Hoboken, pp 319–348

    Google Scholar 

  • Sin LT, Rahmat AR, Rahman WA (2012) Polylactic acid: PLA biopolymer technology and applications. Elsevier, Amsterdam

    Google Scholar 

  • Song F, Gu L, Zhu N, Yuan H (2013) Leaching behavior of heavy metals from sewage sludge solidified by cement-based binders. Chemosphere 92:344–350

    CAS  Google Scholar 

  • Stabnikov V, Chu J, Naeimi M, Ivanov V (2011) Formation of water-impermeable crust on sand surface using biocement. Cement Concrete Res 41:1143–1149

    CAS  Google Scholar 

  • Stabnikov V, Chu J, Ivanov V, Li Y (2013a) Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand. World J Microb Biotechnol 29:1453–1460

    CAS  Google Scholar 

  • Stabnikov V, Chu J, Myo AN, Ivanov V (2013b) Immobilization of sand dust and associated pollutants using bioaggregation. Water Air Soil Pollut 224:1631–1700

    Google Scholar 

  • Suchomel F, Marsche M (2013) TENCEL®—A high-performance sustainable cellulose fiber for the construction industry/composites. J Chem Eng 7:626–632

    CAS  Google Scholar 

  • Sudesh K, Abe H (2010) Practical guide to microbial polyhydroxyalkanoates. Smithers Rapra Technology, UK

    Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    CAS  Google Scholar 

  • Tokiwa Y, Tsuchiya A (2003) Biodegradable resin compositions. US Patent 666977

  • Vahabi A, Ramezanianpour AA, Sharafi H, Shahbani HZ, Vali H, Noghabi KA (2014) Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials. J Basic Microbiol 53:1–7

    Google Scholar 

  • Valls S, Vàzquez E (2001) Accelerated carbonatation of sewage sludge–cement–sand mortars and its environmental impact. Cement Concrete Res 31:1271–1276

    CAS  Google Scholar 

  • Valls S, Yagüe A, Vázquez E, Mariscal C (2004) Physical and mechanical properties of concrete with added dry sludge from a sewage treatment plant. Cement Concrete Res 34:2203–2208

    CAS  Google Scholar 

  • van der Ruyt M, van der Zon W (2009) Biological in situ reinforcement of sand in near-shore areas. Geotech Eng 162:81–83

    Google Scholar 

  • van Loosdrecht MCM, Kleerebezem R, Muyzer G, Jian Y, Johnson K (2008) Process for selecting polyhydroxyalkanoate (PHA) producing micro-organisms. WO/2009/153303

  • Van Tittelboom K, De Belie N, De Muynck W, Verstraete W (2010) Use of bacteria to repair cracks in concrete. Cement Concrete Res 40:157–166

    Google Scholar 

  • Vempada SR, Reddy SSP, Rao MVS, Sasikala C (2011) Strength enhancement of cement mortar using microorganisms—an experimental study. Int J Earth Sci Eng 4:933–936

    Google Scholar 

  • Volova TG (2004) Polyhydroxyalkanoates—plastic materials of the 21st century. Nova Publishers, New York

    Google Scholar 

  • Wang JY, De Belie N, Verstraete W (2012) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biotechnol 39:567–577

    CAS  Google Scholar 

  • Warren LA, Maurice PA, Parmar N, Ferris FG (2001) Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiol J 18:93–115

    CAS  Google Scholar 

  • Weaver TJ, Burbank M, Lewis A, Lewis R, Williams B (2011) Bio-induced calcite, iron, and manganese precipitation for geotechnical engineering applications. Geo-Frontiers: advances in geotechnical engineering. ASCE, New York, pp 3975–3983

    Google Scholar 

  • Webster A, May E (2006) Bioremediation of weathered-building stone surfaces. Trends Biotechnol 24:255–260

    CAS  Google Scholar 

  • Weil MH, DeJong JT, Martinez BC, Mortensen BM, Waller JT (2011) Seismic and resistivity measurements for real-time monitoring of microbially induced calcite precipitation in sand. ASTM Geotech Test J 35:1–12

    Google Scholar 

  • Whiffin VS, van Paassen LA, Harkes MP (2007) Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J 24:17–423

    Google Scholar 

  • Wiktor V, Jonkers HM (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement Concrete Compos 33:763–770

    CAS  Google Scholar 

  • Willke T, Vorlop KD (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66:131–142

    CAS  Google Scholar 

  • Wu M, Johannesson B, Geiker M (2012) A review: self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Constr Build Mater 28:571–583

    Google Scholar 

  • Yagüe A, Valls S, Vázquez E, Albareda F (2005) Durability of concrete with addition of dry sludge from waste water treatment plants. Cement Concrete Res 35:1064–1073

    Google Scholar 

  • Yang J, Shi Y, Yang X, Liang M, Li Y, Li Y, Ye N (2013) Durability of autoclaved construction materials of sewage sludge–cement–fly ash–furnace slag. Constr Build Mater 48:398–405

    Google Scholar 

  • Yao L, Yang J, Sun J, Cai L, He L, Huang H, Song R, Hao Y (2011) Hard and transparent hybrid polyurethane coatings using in situ incorporation of calcium carbonate nanoparticles. Mater Chem Phys 129:523–528

    CAS  Google Scholar 

  • Yegian M, Eseller-Bayat E, Alshawabkeh A, Ali S (2007) Induced-partial saturation for liquefaction mitigation: experimental investigation. J Geotech Geoenviron Eng 133:372–380

    Google Scholar 

  • Yu J (2006) Production of biodegradable thermoplastic materials from organic wastes. US Patent 7141400

  • Zeiml M, Leithner D, Lackner R, Mang HA (2006) How do polypropylene fibers improve the spalling behavior of in situ concrete? Cement Concrete Res 36:929–942

    CAS  Google Scholar 

Download references

Acknowledgments

The research has been partially supported by the Ministry of National Development, Singapore as MND-NTU joint R&D “Biogrouting for inderground construction—a new technology to maximize the usage of underground space in Singapore” (Grant No. SUL2013-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Stabnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stabnikov, V., Ivanov, V. & Chu, J. Construction Biotechnology: a new area of biotechnological research and applications. World J Microbiol Biotechnol 31, 1303–1314 (2015). https://doi.org/10.1007/s11274-015-1881-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1881-7

Keywords

Navigation