Skip to main content
Log in

Mechanism of zinc resistance in a plant growth promoting Pseudomonas fluorescens strain

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial systems have evolved a number of mechanisms, both active and passive, to manage toxic concentrations of heavy metals in their environment. The present study is aimed at describing the zinc resistance mechanism in a rhizospheric isolate, Pseudomonas fluorescens strain Psd. The strain was able to sustain an external Zn2+ concentration of up to 5 mM in the medium. The strategy for metal management by the strain was found to be extracellular biosorption with a possible role of exopolysaccharides in metal accumulation. The attainment of equilibrium in biosorption reaction was found to be dependent on initial Zn2+ concentration, with the reaction reaching equilibrium faster (50 min) at high initial Zn2+ concentration. Biosorption kinetics of the process was adjusted to pseudo-first order rate equation. With the help of Langmuir and Freundlich adsorption isotherms, it was established that Zn2+ biosorption by the bacterium is a thermodynamically favourable process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Babu BV, Ramakrishna V (2003) Modeling of adsorption isotherm constants using regression analysis and neural network. In: Proceedings of the 2nd International conference on water quality management, February 13–15, New Delhi

  • Barceloux DG (1999) Zinc. J Toxicol Clin Toxicol 37:279–292

    Article  CAS  Google Scholar 

  • Bautista-Hernández DA, Ramírez-Burgos LI, Duran-Páramo E, Fernández-Linares L (2012) Zinc and lead biosorption by Delftia tsuruhatensis: a bacterial strain resistant to metals isolated from mine tailings. J Water Resour Prot 4:207–216

    Article  Google Scholar 

  • Belimov AA, Kunakova AM, Safronova VI, Stepanok VV, Yudkin LY, Alekseev YV, Kozhemyakov AP (2004) Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Microbiology 73:99–106

    Article  CAS  Google Scholar 

  • Bhagat R, Srivastava S (1994) Effect of Zn on morphology and ultrastructure of Pseudomonas stutzeri. J Gen Appl Microbiol 40:265–270

    Article  CAS  Google Scholar 

  • Binupriya AR, Sathishkumar M, Kavitha D, Swaminathan K, Yun SE, Mun SP (2007) Experimental and isothermal studies on sorption of Congo red by modified mycelial biomass of wood-rotting fungus. Clean 35:143–150

    CAS  Google Scholar 

  • Bitton G, Freihofer V (1978) Influence of extracellular polysaccharides on the toxicity of copper and cadmium toward Klebsiella aerogenes. Microb Ecol 4:119–125

    Article  CAS  Google Scholar 

  • Cha JS, Cooksey DA (1991) Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci USA 88:8915–8919

    Article  CAS  Google Scholar 

  • Chen C, Wang JL (2007) Characteristics of Zn2+ biosorption by Saccharomyces cerevisiae. Biomed Environ Sci 20:478–482

    CAS  Google Scholar 

  • Chen XC, Wang YP, Lin Q, Shi JY, Wu WX, Chen YX (2005) Biosorption of copper (II) and zinc (II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf B 46:101–107

    Article  CAS  Google Scholar 

  • Chen D, Qian PY, Wang WX (2008) Biokinetics of cadmium and zinc in a marine bacterium: influences of metal interaction and pre-exposure. Environ Toxicol Chem 27(8):179–186

    Article  Google Scholar 

  • Chen X, Hu S, Shen C, Dou C, Shi J, Chen Y (2009) Interaction of Pseudomonas putida CZ1 with clays and ability of the composite to immobilize copper and zinc from solution. Bioresour Technol 100:330–337

    Article  CAS  Google Scholar 

  • Choudhury R, Srivastava S (2001a) Zinc resistance mechanisms in bacteria. Curr Sci 81:768–775

    CAS  Google Scholar 

  • Choudhury R, Srivastava S (2001b) Mechanism of zinc resistance in Pseudomonas putida strain S4. World J Microbiol Biotechnol 17:149–153

    Article  CAS  Google Scholar 

  • Errasquin EL, Vazquez C (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50:137–143

    Article  Google Scholar 

  • Filipovic-Covacevic Z, Sipos L, Briski F (2000) Biosorption of chromium, copper, nickel and zinc ions onto fungal pellets of Aspergillus niger 405 from aqueous solutions. Food Technol Biotechnol 38(3):211–216

    Google Scholar 

  • Gilotra U, Srivastava S (1997) Plasmid-bound copper sequestration in Pseudomonas pickettii strain US321. Curr Microbiol 34:378–381

    Article  CAS  Google Scholar 

  • Gowri PM, Srivastava S (1996) Reduced uptake based zinc resistance in Azospirillum brasilense sp7. Curr Sci 71:139–142

    CAS  Google Scholar 

  • Guiné V, Spadini L, Sarret G, Muris M, Delolme C, Gaudet JP, Martins JM (2006) Zinc sorption to three gram-negative bacteria: combined titration, modeling, and EXAFS study. Environ Sci Technol 40(6):1806–1813

    Article  Google Scholar 

  • Ho YS, McKay G (1998) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot 76(4):332–340

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) The sorption of lead(II) ions on peat. Water Res 33:578–584

    Article  CAS  Google Scholar 

  • Horikoshi T, Nakijima A, Sakaguchi T (1981) Studies on accumulation of heavy metal elements in biological systems. Eur J Appl Microbiol Biotechnol 12:90–96

    Article  CAS  Google Scholar 

  • Jayaraman J (1981) Biomolecules I. In: Jayaraman J (ed) Laboratory manual in biochemistry. Wiley Eastern, New Delhi, pp 49–60

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  Google Scholar 

  • Kochar M, Upadhyay A, Srivastava S (2011) Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens Psd and plant growth regulation by hormone overexpression. Res Microbiol 162(4):426–435

    Article  CAS  Google Scholar 

  • Kumar KV (2006) Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. J Hazard Mater B137:1538–1544

    Article  Google Scholar 

  • Lagergren S (1898) About the theory of so-called adsorption of soluble substances. K Sven Vetenskapsakad Handl 24(4):1–39

    Google Scholar 

  • Ledin M (2000) Accumulation of metals by microorganisms—processes and importance for soil systems. Earth Sci Rev 51:1–31

    Article  CAS  Google Scholar 

  • Liu H-L, Chen B-Y, Lan Y-W, Cheng YC (2004) Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans. Chem Eng J 97:195–201

    Article  CAS  Google Scholar 

  • Lu D, Boyd B, Lingwood CA (1997) Identification of the key protein for zinc uptake in Hemophilus influenzae. J Biol Chem 272(46):29033–29038

    Article  CAS  Google Scholar 

  • Mameri N, Boudries N, Addour L, Belhocine D, Lounici H, Grib H, Pauss A (1999) Batch zinc biosorption by a bacterial nonliving Streptomyces rimosus biomass. Water Res 33:1347–1354

    Article  CAS  Google Scholar 

  • Oh SE, Hassan SHA, Joo JH (2009) Biosorption of heavy metals by lyophilized cells of Pseudomonas stutzeri. World J Microbiol Biotechnol 25:1771–1778

    Article  CAS  Google Scholar 

  • Pardo R, Herguedas M, Barrado E, Vega M (2003) Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal Bioanal Chem 376:26–32

    CAS  Google Scholar 

  • Preetha B, Viruthagiri T (2005) Biosorption of zinc (II) by Rhizopus arrhizus: equilibrium and kinetic modelling. Afr J Biotechnol 4(6):506–508

    CAS  Google Scholar 

  • Rho JY, Kim JH (2002) Heavy metal biosorption and its significance to metal tolerance of Streptomycetes. J Microbiol 40(1):51–54

    CAS  Google Scholar 

  • Saxena D, Joshi N, Srivastava S (2002) Mechanism of copper resistance in a copper mine isolate Pseudomonas putida strain S4. Curr Microbiol 45:410–414

    Article  CAS  Google Scholar 

  • Tan T, Cheng P (2003) Biosorption of metal ions with Penicillium chrysogenum. Appl Biochem Biotechnol 104:119–128

    Article  CAS  Google Scholar 

  • Taniguchi J, Hemmi H, Tanahashi K, Amano N, Nakayama T, Nishino T (2000) Zinc biosorption by a zinc-resistant bacterium, Brevibacterium sp. Strain HZM-1. Appl Microbiol Biotechnol 54:581–588

    Article  CAS  Google Scholar 

  • Upadhyay A, Srivastava S (2008) Characterization of a new isolate of Pseudomonas fluorescens strain Psd as a potential biocontrol agent. Lett Appl Microbiol 47:98–105

    Article  CAS  Google Scholar 

  • Upadhyay A, Srivastava S (2010) Evaluation of multiple plant growth promoting traits of an isolate of Pseudomonas fluorescens strain Psd. Indian J Exp Biol 48(6):601–609

    CAS  Google Scholar 

  • Upadhyay A, Srivastava S (2011) Phenazine-1-carboxylic acid is a more important contributor to biocontrol Fusarium oxysporum than pyrrolnitrin in Pseudomonas fluorescens strain Psd. Microbiol Res 166(4):323–335

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  Google Scholar 

  • Whiting SN, deSouza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 15:3144–3150

    Article  Google Scholar 

  • Zhou W, Wang J, Shen B, Hou W, Zhang Y (2009) Biosorption of copper (II) and cadmium(II) by a novel exopolysaccharide secreted from deep-sea mesophilic bacterium. Colloids Surf B Biointerfaces 72(2):295–302

    Article  CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33(3):406–441

    Article  Google Scholar 

Download references

Acknowledgments

The financial assistance provided by Department of Biotechnology, Govt. of India is gratefully acknowledged. Authors also acknowledge the support provided to Department of Genetics under UGC-SAP and DST-FIST programs of Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheela Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Upadhyay, A., Srivastava, S. Mechanism of zinc resistance in a plant growth promoting Pseudomonas fluorescens strain. World J Microbiol Biotechnol 30, 2273–2282 (2014). https://doi.org/10.1007/s11274-014-1648-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1648-6

Keywords

Navigation