Skip to main content

Advertisement

Log in

Postharvest growth dynamic of Schoenoplectus californicus along fluvio-estuarine and flooding gradients

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

The emergent wetland plant Schoenoplectus californicus is used as fiber in several American countries, but the effects of harvesting on this species have not previously been studied. We analyzed the biomass production, stem density and morphometry of this species along fluvio-estuarine and flooding gradients and evaluated the effects of harvesting on growth and recovery capacity in the Santa Lucía River (Uruguay), comparing river sections and surface elevations. Differences in biomass, length and stem density were associated with the dynamics of the hydrological regime. The mean biomass and length growth rates were 3.0 ± 2.8 g day−1 and 0.8 ± 0.5 cm day−1, respectively. The analysis of the postharvest growth dynamic showed variation among the stems, suggesting the existence of mechanisms of plant compensation for the harvest effect. Six months after the harvest, S. californicus had recovered, e.g., in stem length and density, while the biomass showed a slower recovery. Our results suggest that the recovery capacity of this species depends on the population structure before the harvest and on favorable conditions during the recovery period. Based on our results, we recommend strategies for sustainable harvest management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baldwin AH, Mendelssohn IA (1998) Response of two oligohaline marsh communities to lethal and nonlethal disturbance. Oecologia 116:543–555. doi:10.1007/s004420050620

    Article  PubMed  Google Scholar 

  • Barko JW, Smart RM (1978) The growth and biomass distribution of two emergent freshwater plants, Cyperus esculentus and Scirpus validus, on different sediments. Aquat Bot 5:109–117. doi:10.1007/s004420050620

    Article  Google Scholar 

  • Beetle AA (1950) Bulrushes and their multiple source. Econ Bot 4:132–138

    Article  Google Scholar 

  • Benot ML, Mony C, Puijalon S, Mohammad-Esmaeili M, van Alphen JJM, Bouzillí J, Bonis A (2009) Responses of clonal architecture to experimental defoliation: a comparative study between ten grassland species. Plant Ecol 201:621–630. doi:10.1007/s11258-008-9546-3

    Article  Google Scholar 

  • Bouyoucus G (1962) Hydrometer method improved for making particle size analyses of soils. Agron J 54:464–465

    Article  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic and available forms of phosphorus in soil. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Brinson MM (1993) Changes in the functioning of wetlands along environmental gradients. Wetlands 13:65–74. doi:10.1007/BF03160866

    Article  Google Scholar 

  • Brinson MM, Lugo AE, Brown S (1981) Primary productivity, decomposition and consumer activity in freshwater wetlands. Annu Rev Ecol Syst 12:123–161. doi:10.1146/annurev.es.12.110181.001011

    Article  Google Scholar 

  • Castaño JP, Giménez A, Ceroni M, Furest J, Aunchayna R, Bidegain M (2011) Caracterización agroclimática del Uruguay 1980–2009. INIA Serie técnica 193. http://www.inia.org.uy/gras/agroclima/cara_agro/index-2.html. Acceded 25 March 2012

  • Chebataroff J (1973) Ambientes salinos, su vegetación, problemas de utilización. Facultad de Humanidades y Ciencias, Departamento de Geografía, Montevideo

    Google Scholar 

  • Das SC, Tanaka N (2007) The effects of breaking or bending the stems of two rhizomatous plants, Phragmites australis and Miscanthus sacchariflorus, on their communities. Landsc Ecol Eng 3:131–141. doi:10.1007/s11355-007-0028-x

    Article  Google Scholar 

  • Eckert CG (1999) Clonal plant research: proliferation, integration, but not much evolution. Am J Bot 86:1649–1654

    Article  Google Scholar 

  • Feinsenger P (2004) El diseño de estudios de campo para la conservación de la biodiversidad. FAN, Santa Cruz de la Sierra

    Google Scholar 

  • Ferraro DO, Oesterheld M (2002) Effect of defoliation on grass growth. A quantitative review. Oikos 98:125–133. doi:10.1034/j.1600-0706.2002.980113.x

    Article  Google Scholar 

  • Gross N, Suding KN, Lavorel S (2007) Leaf dry matter content and lateral spread predict response to land use change for six subalpine grassland species. J Veg Sci 18:289–300. doi:10.1111/j.1654-1103.2007.tb02540.x

    Article  Google Scholar 

  • Hayball N, Pearce M (2004) Influences of simulated grazing and water-depth on the growth of juvenile Bolboschoenus caldwellii, Phragmites australis and Schoenoplectus validus plants. Aquat Bot 78:233–242. doi:10.1016/j.aquabot.2003.10.004

    Article  Google Scholar 

  • Hedge P, Kriwoken LK, Patten K (2003) A review of Spartina management in Washington State, US. J Aquat Plant Manage 41:82–90

    Google Scholar 

  • Hester MW, Willis JM, Sloey TM (2016) Field assessment of environmental factors constraining the development and expansion of Schoenoplectus californicus marsh at a California tidal freshwater restoration site. Wetl Ecol Manag 24:33–44. doi:10.1007/s11273-015-9448-9

    Article  Google Scholar 

  • Howard RJ, Rafferty PS (2006) Clonal variation in response to salinity and flooding stress in four marsh macrophytes of the Northern Gulf of Mexico, USA. Environ Exp Bot 56:301–313. doi:10.1016/j.envexpbot.2005.03.003

    Article  Google Scholar 

  • Isacch JP, Costa CSB, Rodríguez-Gallego L, Conde D, Escapa M, Gagliardini DA, Iribarne OO (2006) Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the South-West Atlantic coast. J Biogeogr 33:888–890. doi:10.1111/j.1365-2699.2006.01461.x

    Article  Google Scholar 

  • Kandus P, Malvárez AI, Madanes N (2003) Estudio de las comunidades de plantas herbáceas de las Islas Bonaerenses del bajo Delta del Río Paraná (Argentina). Darwiniana 41:1–16

    Google Scholar 

  • Kandus P, Quintana RD, Bó RF (2006) Patrones de paisaje y biodiversidad del bajo Delta del Río Paraná. Mapa de ambientes. Pablo Casamajor Ediciones, Buenos Aires

    Google Scholar 

  • Ladio AH, Lozada M (2009) Human ecology, ethnobotany and traditional practices in rural populations inhabiting the Monte region: resilience and ecological knowledge. Journal of Arid Environments 73:222–227

    Article  Google Scholar 

  • Ladipo DO, Leakey RRB, Grace J (1991) Clonal variation in apical dominance of Triplochiton scleroxylon K. Schum. in response to decapitation. Silvae Genet 40:135–140

    Google Scholar 

  • Lentz KA, Cipollini DF (1998) Effect of light and simulated herbivory on growth of endangered northeastern bulrush, shape Scirpus ancistrochaetus Schuyler. Plant Ecol 139:125–131. doi:10.1023/A:1009762603019

    Article  Google Scholar 

  • Lombardo A (1984) Flora montevidensis. Monocotiledoneas tomo III, Intendencia Municipal de Montevideo, Montevideo

    Google Scholar 

  • Macia MJ (2006) Las plantas de fibra. Botánica Económica de los Andes Centrales. Universidad Mayor de San Andrés, La Paz, pp 370–384

    Google Scholar 

  • Macia MJ, Balsev H (2000) Use and management of Totora (Schoenoplectus californicus, Cyperaceae) in Ecuador. Econ Bot 54:82–89. doi:10.1007/BF02866602

    Article  Google Scholar 

  • Mallison CT, Thompson BZ (2010) Planting strategies to establish Giant Bulrush. J Aquat Plant Manage 48:111–115

    Google Scholar 

  • Margalef R (1983) Limnología. Omega, Barcelona

    Google Scholar 

  • Mayence CE, Marshall DJ, Godfree RC (2010) Hydrologic and mechanical control for an invasive wetland plant, Juncus ingens, and implications for rehabilitating and managing Murray River floodplain wetlands, Australia. Wetl Ecol Manag 18:717–730. doi:10.1007/s11273-010-9191-1

    Article  Google Scholar 

  • Middleton BA (1990) Effect of water depth and clipping frequency on the growth and survival of four wetland plant species. Aquat Bot 37:189–196. doi:10.1016/0304-3770(90)90091-X

    Article  Google Scholar 

  • Middleton BA, van der Valk AG, Davis CB (2015) Responses to water depth and clipping of twenty-three plant species in an Indian monsoonal wetland. Aquat Bot 126:38–47. doi:10.1016/j.aquabot.2015.06.004

    Article  Google Scholar 

  • Nagy GJ, Martínez CM, Caffera RM, Pedrosa G, Forbes EA, Perdomo AC, Labord JL (1997) Marco hidrológico y climático Del Río de la Plata. In: Wells PG, Daborn GR (eds) El Río de la Plata, una revisión ambiental. Dalhousie University, Halifax, Nova Scotia, Un informe del Proyecto Ecoplata, pp 17–70

    Google Scholar 

  • Neubauer ME, Plaza de los Reyes C, Pozo G, Villamar CA, Vidal G (2012) Growth and nutrient uptake by Schoenoplectus californicus (C.A. Méyer) Sójak in a constructed wetland fed with swine slurry. J Soil Sci Plant Nutr 12:421–430. doi:10.4067/S0718-95162012005000004

    Article  Google Scholar 

  • Newton AC, Cornelius JP, Mesén JF, Leakey RRB (1995) Genetic variation in apical dominance of Cedrela odorata seedlings in response to decapitation. Silvae Genet 44:146–150

    Google Scholar 

  • Oliveira ME, Nhuch G (1986) Avaliação sazonal do conteúdo de P-PO4, Biomassa e densidade em Scirpus californicus, no Saco de Tapes (RS). Acta Limnol Bras 1:299–316

    Google Scholar 

  • PELT (2006) Validación de las técnicas de plantación, corte y cosecha de totora (Schoenoplectus tatora) Estudio 21.03 http://www.alt-perubolivia.org/Web_Bio/PROYECTO/Docum_peru/. Acceded 28 January 2009

  • Pratolongo P, Kandus P, Brinson MM (2008) Net aboveground primary production and biomass dynamics of Schoenoplectus californicus (Cyperaceae) marshes growing under different hydrological conditions. Darwiniana 46:258–269

    Google Scholar 

  • Rossi JB, Tur NM (1976) Autoecología de Scirpus californicus. II. Desarrollo del rizoma. Bol Soc Argent Bot 17:280–288

    Google Scholar 

  • Russell IA, Kraaij T (2008) Effects of cutting Phragmites australis along an inundation gradient, with implications for managing reed encroachment in a South African estuarine lake system. Wetl Ecol Manag 16:383–393. doi:10.1007/s11273-007-9075-1

    Article  Google Scholar 

  • Sale PJM, Wetzel RG (1983) Growth and metabolism of Typha species in relation to cutting treatments. Aquat Bot 15:321–334. doi:10.1016/0304-3770(83)90001-3

    Article  CAS  Google Scholar 

  • Silveira TCL, Goncalves Rodrigues G, Coelho Peixoto, de Souza G, Wurdig NL (2011) Effects of cutting disturbance in Schoenoplectus californicus (C.A.Mey.) Sojak on the benthic macroinvertebrates. Acta Scient Biol Sci 33:31–39. doi:10.4025/actascibiolsci.v33i1.6383

    Article  Google Scholar 

  • Sloey TM, Willis JM, Hester MW (2015) Hydrologic and edaphic constraints on Schoenoplectus acutus, Schoenoplectus californicus, and Typha latifolia in tidal marsh restoration. Restor Ecol 23:430–438

    Article  Google Scholar 

  • Strauss SY, Agrawal AA (1999) The ecology and evolution of plant tolerance to herbivory. Trends Ecol Evol 14:179–185. doi:10.1016/S0169-5347(98)01576-6

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N, Watanabe T, Asaeda T, Takemura T (2005) Management of below-ground biomass of Typha angustifolia by harvesting shoots above the water surface on different summer days. Landsc Ecol Eng 1:113–126. doi:10.1007/s11355-005-0014-0

    Article  Google Scholar 

  • Tur NM, Rossi JB (1976) Autoecología de Scirpus californicus. I. Crecimiento y desarrollo de la parte aérea. Bol Soc Argent Bot 17:73–82

    Google Scholar 

  • Vymazal J (2011) Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia 674:133–156. doi:10.1007/s10750-011-0738-9

    Article  CAS  Google Scholar 

  • Walkley A, Black I (1934) An examination of the Degtjareff method and a proposed modification of the chromic matter and a proposed modification of the chromic acid titration method. Soil Sci 34:29–38

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, New Yersey

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Agencia Nacional de Investigación e Innovación (ANII), the Sistema Nacional de Áreas Protegidas (SNAP—Dirección Nacional de Medio Ambiente—Ministerio de Vivienda Ordenamiento Territorial y Medio Ambiente) and the Master in Environmental Sciences program (Universidad de la República, UdelaR) for providing research funds. We appreciate the support and contributions of the Sección Limnología (Facultad de Ciencias, UdelaR) and of the Laboratorio de Ecología, Teledetección e Ecoinformática (Universidad Nacional de San Martín). We thank the Servicio de Oceanografía, Hidrografía y Meteorología de la Armada (SOHMA) for the contribution of meteorological and hydrological data. We also thank Cristhian Clavijo for his assistance during the field study and his contributions during the project. We want to especially acknowledge the memory of Eduardo Alonso Paz for his dedication and contributions to spreading and deepening the knowledge of botany and especially aquatic plants in Uruguay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viveka Sabaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabaj, V., Conde, D., Rodríguez-Gallego, L. et al. Postharvest growth dynamic of Schoenoplectus californicus along fluvio-estuarine and flooding gradients. Wetlands Ecol Manage 26, 125–138 (2018). https://doi.org/10.1007/s11273-017-9560-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-017-9560-0

Keywords

Navigation