Skip to main content

Advertisement

Log in

Analyzing the occurrence of an invasive aquatic fern in wetland using data-driven and multivariate techniques

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

In the present study, the data-driven (classification trees and support vector machines) and multivariate techniques (principal component analysis and discriminant analysis) were applied to study the habitat preferences of an invasive aquatic fern (Azolla filiculoides) in the Selkeh Wildlife Refuge (a protected area in Anzali wetland, northern Iran). The applied database consisted of measurements from seven different sampling sites in the protected area over the study period 2007–2008. The cover percentage of the exotic fern was modelled based on various wetland characteristics. The predictive performances of the both data-driven methods were assessed based on the percentage of Correctly Classified Instances and Cohen’s kappa statistics. The results of the Paired Student’s t-test (p < 0.01) showed that SVMs outperformed the CTs and thus yielded more reliable prediction than the CTs. All data mining and multivariate techniques showed that both physical-habitat and water quality variables (in particular some nutrients) might affect the habitat requirements of A. filiculoides in the wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source Guilan Environment Protection Bureau 2007)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbasi FM, Brar DS, Carpena AL, Fukui K, Khush GS (1999) Detection of autosyndetic and allosyndetic pairing among A and E genomes of Oryza through genomic in situ hybridization. Rice Genet Newsl 16:24–25

    Google Scholar 

  • Ahmad SS, Reshi ZA, Shah MA, Rashid I, Ara R, Andrabi SMA (2016) Heavy metal accumulation in the leaves of Potamogeton natans and Ceratophyllum demersum in a Himalayan RAMSAR site: management implications. Wetl Ecol Manag 24(4):469–475

    Article  CAS  Google Scholar 

  • Akkermans W, Verdonschot PFM, Nijboer RC, Goedhart PW, Braak CJF (2004) Predicting macro-fauna community types from environmental variables by means of support vector machines. In: Lek S, Scardi M, Verdonschot PFM, Descy JP, Park YS (eds) Modelling community structure in freshwater ecosystems. Springer, Berlin, p 518

    Google Scholar 

  • Ambelu A, Lock K, Goethals PLM (2010) Comparison of modelling techniques to predict macroinvertebrate community composition in rivers of Ethiopia. Ecol Inform 5:147–152

    Article  Google Scholar 

  • APHA/AWWA/WEF (1998) Standard methods for the examination of water and wastewater, 19th ed. Washington

  • Barreto R, Charudattan A, Pomella A, Hanada R (2000) Biological control of neotropical aquatic weeds with fungi. Crop Prot 19:697–703

    Article  Google Scholar 

  • Biswas M, Parveen S, Shimozawa H, Nakagoshi N (2005) Effects of Azolla species on weed emergence in a rice paddy ecosystem. Weed Biol Manag 5:176–183

    Article  Google Scholar 

  • Bocchi S, Malgioglio A (2010) AzollaAnabaena as a biofertilizer for rice paddy fields in the Po Valley, a temperate rice area in northern Italy. Int J Agron. doi:10.1155/2010/152158

    Google Scholar 

  • Boivin J, Ng S (2006) Are more data always better for factor analysis? J Econ 132:169–194

    Article  Google Scholar 

  • Buckland ST, Borchers DL, Johnston A, Henrys PA, Marques TA (2007) Line transect methods for plant surveys. Biometrics 63:989–998

    Article  CAS  PubMed  Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  • Dakou E, D’heygere T, Dedecker A, D’heygere T, Goethals PLM, De Pauw N, Lazaridou-Dimitriadou M (2007) Decision tree models for prediction of macroinvertebrate taxa in the river Axios Northern Greece. Aquat Ecol 41:399–411

    Article  Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology. Wiley, New York

    Google Scholar 

  • De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192

    Article  Google Scholar 

  • Delnavaz B, Ataei A (2009) Alien and exotic Azolla in northern Iran. Afr J Biotechnol 8:187–190

    Google Scholar 

  • Devin S, Beisel JN (2007) Biological and ecological characteristics of invasive species, a gammarid study. Biol Invasions 9:13–24

    Article  Google Scholar 

  • Dzeroski S, Demsar D, Grbovic J (2000) Predicting chemical parameters of river water quality from bioindicator data. Appl Intell 13:7–17

    Article  Google Scholar 

  • Elshorbagy A, El-Baroudy I (2009) Investigating the capabilities of evolutionary data-driven techniques using the challenging estimation of soil moisture content. J Hydroinf 11:237–251

    Article  Google Scholar 

  • Everaert G, Boets P, Lock K, Džeroski S, Goethals PLM (2011) Using classification trees to analyze the ecological impact of invasive species in polder lakes in Flanders, Belgium. Ecol Model 222:2202–2212

    Article  Google Scholar 

  • Fernández-Zamudio R, García-Murilloa P, Cirujano S (2010) Germination characteristics and sporeling success of A. filiculoides Lam., an aquatic invasive fern, in a Mediterranean temporary wetland. Aquat Bot 93:89–92

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Fukunaga K (1990) Introduction to statistical pattern recognition. Academic Press, New York

    Google Scholar 

  • Giustolisi O, Savic DA (2009) Advances in data-driven analyses and modelling using EPR-MOGA. J Hydroinf 11:225–236

    Article  Google Scholar 

  • Goethals PLM (2005) Data driven development of predictive ecological models for benthic macroinvertebrates in rivers. PhD thesis. University of Ghent, p 377

  • Goethals PLM, De Pauw N (2001) Development of a concept for integrated river assessment in Flanders, Belgium. J Limnol 60(1):7–16

    Article  Google Scholar 

  • Goethals PLM, Dedecker AP, Gabriels W, Lek S, De Pauw N (2007) Applications of artificial neural networks predicting macroinvertebrates in freshwaters. Aquat Ecol 41:491–508

    Article  Google Scholar 

  • Gooyong L, Sangeun L, Heekyung P (2014) Improving applicability of neuro-genetic algorithm to predict short-term water level: a case study. J Hydroinf. doi:10.2166/hydro.2013.011

    Google Scholar 

  • Haghi Vayghan A, Zarkami R, Sadeghi R, Fazli H (2015) Modelling habitat preferences of Caspian kutum, Rutilus frisii kutum (Kamensky, 1901) (Actinopterygii, Cypriniformes) in the Caspian Sea. Hydrobiologia. doi:10.1007/s10750-015-2446-3

    Google Scholar 

  • Hammer Ø (2013) Paleontological statistics (PAST). Natural History Museum, University of Oslo, Oslo, p 221

    Google Scholar 

  • Harper DAT (1999) Numerical palaeobiology. Wiley, New York

    Google Scholar 

  • Hill MP (2003) The impact and control of alien aquatic vegetation in South African aquatic ecosystems. Afr J Aquat Sci 28:19–24

    Article  Google Scholar 

  • Hoang TH, Lock K, Mouton A, Goethals PLM (2010) Application of classification trees and support vector machines to model the presence of macroinvertebrates in rivers in Vietnam. Ecol Inform 5:140–146

    Article  Google Scholar 

  • Janes R (1998) Growth and survival of A. filiculoides in Britain. 1. Vegetative reproduction. New Phytol 138:367–376

    Article  Google Scholar 

  • Japan International Cooperation Agency (JICA) (2005) The study on integrated management of the Anzali Wetland in the Islamic Republic of Iran-final report, vol 2. p 222

  • Kannaiyan S, Somporn C (1989) Effect of high temperature on growth, nitrogen fixation, and chlorophyll content of five species of Azolla-Anabaena symbiosis. Biol Fertil Soils 7:168–172

    Article  CAS  Google Scholar 

  • Karatayev AY, Burlakova LE, Padilla DK, Mastitsky SE, Olenin S (2009) Invaders are not a random selection of species. Biol Invasions 11:2009–2019

    Article  Google Scholar 

  • Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK (2001) Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput 13:637–649

    Article  Google Scholar 

  • Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Min C, Xia-shi L, Chungchu L (2008) Research on some functions of Azolla in CELSS system. Acta Astronaut 63:1061–1066

    Article  CAS  Google Scholar 

  • Lumpkin TA, Plucknett DL (1982) Azolla as a green manure, use and management in crop production. Westview tropical agriculture, vol 5. Westview Press, Boulder

    Google Scholar 

  • Mansoori J (1995) Islamic Republic of Iran. In: Scott DA (ed) A directory of wetlands in the Middle East. IUCN, Slimbridge

    Google Scholar 

  • Olenin S, Minchin D, Daunys D (2007) Assessment of biopollution in aquatic ecosystems. Mar Pollut Bull 55:379–394

    Article  CAS  PubMed  Google Scholar 

  • Parsons M, Thoms MC, Horris RH (2004) Development of a standard approach to river habitat assessment in Australia. Environ Monit Assess 98:109–130

    Article  PubMed  Google Scholar 

  • Platt J (1998) Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf B, Burges C, Smola A (eds) Advances in Kernel methods—support vector learning. MIT Press, Cambridge

    Google Scholar 

  • Quinlan JR (1993) C4.5, program for machine learning. Morgan Kaufmann Publishers, San Francisco, p 302

    Google Scholar 

  • Ricciardi A, MacIsaac HJ (2000) Recent mass invasion of the North American Great Lakes by Ponto-Caspian species. Trends Ecol Evol 15:62–65

    Article  CAS  PubMed  Google Scholar 

  • Robert JA (2003) Neural network rainfall-runoff forecasting based on continuous resampling. J Hydroinf 5:51–61

    Google Scholar 

  • Sadeghi R, Zarkami R, Sabetraftar K, Van Damme P (2012) Application of classification trees to model the distribution pattern of a new exotic species Azolla filiculoides (Lam.) in Selkeh Wildlife Refuge, Anzali wetland, Iran. Ecol Model 243:8–17

    Article  Google Scholar 

  • Savic DA, Giustolisi O, Laucelli D (2009) Asset deterioration analysis using multi-utility data and multi-objective data. J Hydroinf 11:211–224

    Article  Google Scholar 

  • Serag MS, El-Hakeem A, Badway M, Mousa MA (2000) On the ecology of A. filiculoides Lam. in Damietta District, Egypt. Limnologica 30:73–81

    Article  Google Scholar 

  • Sumners WH, Archibold OW (2007) Exotic plant species in the southern boreal forest of Saskatchewan. For Ecol Manag 251:156–163

    Article  Google Scholar 

  • Sweet AR, Hills LV (1971) A study of A. pinnata R. brown. Am Fern J 71:1–14

    Article  Google Scholar 

  • Taghi-Ganji M, Khosravi M, Rakhshaee R (2005) Biosorption of Pb (2I), Cd (2I), Cu (2I) and Zn (II) from the wastewater by treated A. filiculoides with H2O2/MgCl2. Int J Environ Sci Technol 1:265–271

    Article  Google Scholar 

  • Van Der Heide T, Roijackers RMM, Peeters ETHM, Van Nes EH (2006) Experiments with duckweed–moth systems suggest that global warming may reduce rather than promote herbivory. Freshw Biol 51:110–116

    Article  Google Scholar 

  • Van Hove C, Lejeune A (2002) The AzollaAnabaena symbiosis. Biol Environ 102:23–26

    Google Scholar 

  • Vander Zanden MJ, Olden JD (2008) A management framework for preventing the secondary spread of aquatic invasive species. Can J Fish Aquat Sci 65:1512–1522

    Article  Google Scholar 

  • Vapnik V (1995) The nature of statistical learning theory. Springer, New York, p 187

    Book  Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84:468–478

    Google Scholar 

  • Watanabe I, Espinase CR (1976) Potential of nitrogen fixing AzollaAnabaena complex as fertilizer in paddy soil. IRRI Saturday seminar

  • Witten IH, Frank E, Hall MA (2011) Data mining, practical machine learning tools and techniques, 3rd edn. Morgan Kaufmann, San Francisco, p 629

    Google Scholar 

  • Zarkami R (2011) Application of classification trees-J48 to model the presence of roach (Rutilus rutilus) in rivers. CJES 9:189–198

    Google Scholar 

  • Zarkami R, Goethals PLM, De Pauw N (2010) Use of classification tree methods to study the habitat requirements of tench Tinca tinca. L., 1758. CJES 8:55–63

    Google Scholar 

  • Zarkami R, Sadeghi R, Goethals PLM (2012) Use of fish distribution modelling for river management. Ecol Model 230:44–49

    Article  Google Scholar 

  • Zarkami R, Sadeghi R, Goethals PLM (2014) Modelling occurrence of roach ‘‘Rutilus rutilus’’ in streams. Aquat Ecol 48:161–177

    Article  Google Scholar 

  • Zhengfu R, Fernando A (2007) Use of an artificial neural network to capture the domain knowledge of a conventional hydraulic simulation model. J Hydroinf 9(1):15–24

    Article  Google Scholar 

  • Zimmerman WJ (1985) Biomass and pigment production in three isolates of Azolla: II. Response to light and temperature stress. Ann Bot Lond 56:701–709

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Guilan Environmental Protection Bureau and Selkeh Wildlife Refuge centre for giving opportunity to take samples in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roghayeh Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, R., Zarkami, R. & Van Damme, P. Analyzing the occurrence of an invasive aquatic fern in wetland using data-driven and multivariate techniques. Wetlands Ecol Manage 25, 485–500 (2017). https://doi.org/10.1007/s11273-017-9530-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-017-9530-6

Keywords

Navigation