Skip to main content
Log in

Biodegradation of Steroid Hormone Estriol by Pseudomonas proteolytica GBPI_Hb61, a Psychrotolerant Himalayan Bacteria

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The Pseudomonas proteolytica GBPI_Hb61 had shown estriol degradation potential. The conditions such as pH, temperature, inoculum volume, agitation speed, and compound concentration were optimized for designing the experiments for getting the maximum degradation using the Box-Behnken design. Bacteria were able to degrade 85.23% of 20 mg L−1 estriol when conditions were media pH 7.0, 25 °C temperature, 6% (v/v) inoculum volume, and 130 rpm agitation speed. Degradation intermediates such as 16-hydroxyestrone, 2-hydroxy2-4-dienevaleric acid, and 2-hydroxy-2,4-diene-1,6-dioic acid were identified through metabolite fragment analysis, and enzyme investigation has shown the presence of acetaldehyde dehydrogenase, dioxygenase, and acetyl COA acetyltransferase in GBPI_Hb61 which are reported to be responsible for estrogen degradation in the environment. GBPI_Hb61 was also found capable of removing estriol in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdulrasheed, M., Zulkharnain, A., Zakaria, N. N., Ahmad Roslee, A. F., Khalil, K. A., Napis, S., et al. (2020). Response surface methodology optimization and kinetics of diesel degradation by a cold-adapted Antarctic bacterium, Arthrobacter sp. strain AQ5–05. Sustainability (Switzerland), 12(17). https://doi.org/10.3390/SU12176966

  • Agnihotri, V., & Thathola, P. (2020). Pharmaceutical and personal care products (PPCPs) in waste water and fresh water sources: Distribution and related health concerns. ENVIS Bulletin Himalayan Ecology, 0971–7447(October), 63–68.

    Google Scholar 

  • Bakhshi, Z., Najafpour, G., Kariminezhad, E., Pishgar, R., Mousavi, N., & Taghizade, T. (2011). Growth kinetic models for phenol biodegradation in a batch culture of Pseudomonas putida. Environmental Technology, 32(16), 1835–1841. https://doi.org/10.1080/09593330.2011.562925

    Article  CAS  Google Scholar 

  • Belhaj, D., Baccar, R., Jaabiri, I., Bouzid, J., Kallel, M., Ayadi, H., & Zhou, J. L. (2015). Fate of selected estrogenic hormones in an urban sewage treatment plant in Tunisia (North Africa). Science of the Total Environment, 505, 154–160. https://doi.org/10.1016/j.scitotenv.2014.10.018

    Article  CAS  Google Scholar 

  • Ben, W., Zhu, B., Yuan, X., Zhang, Y., Yang, M., & Qiang, Z. (2018). Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes. Water Research, 130, 38–46. https://doi.org/10.1016/j.watres.2017.11.057

    Article  CAS  Google Scholar 

  • Bilal, M., & Iqbal, H. M. N. (2019). Persistence and impact of steroidal estrogens on the environment and their laccase-assisted removal. Science of the Total Environment, 690, 447–459. https://doi.org/10.1016/j.scitotenv.2019.07.025

    Article  CAS  Google Scholar 

  • Bitton, G. (1994). Wastewater microbiology. Wiley-Liss, Inc.

    Google Scholar 

  • Box, G. E. P., & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2(4), 455–475. https://doi.org/10.1080/00401706.1960.10489912

    Article  Google Scholar 

  • Brooks, B. W., Berninger, J. P., Ramirez, A. J., & Huggett, D. B. (2012). Perspectives on human pharmaceuticals in the environment (pp. 1–16). https://doi.org/10.1007/978-1-4614-3473-3_1

  • Chen, H. J., Guo, G. L., Tseng, D. H., Cheng, C. L., & Huang, S. L. (2006). Growth factors, kinetics and biodegradation mechanism associated with Pseudomonas nitroreducens TX1 grown on octylphenol polyethoxylates. Journal of Environmental Management, 80(4), 279–286. https://doi.org/10.1016/j.jenvman.2005.09.009

    Article  CAS  Google Scholar 

  • Colborn, T., vom Saal, F. S., & Soto, A. M. (1993). Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environmental Health Perspective., 101(5), 378–84. https://doi.org/10.1289/ehp.93101378

    Article  CAS  Google Scholar 

  • Combalbert, S., & Hernandez-Raquet, G. (2010). Occurrence, fate, and biodegradation of estrogens in sewage and manure. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-010-2547-x

  • Czech, B., & Rubinowska, K. (2013). TiO2-assisted photocatalytic degradation of diclofenac, metoprolol, estrone and chloramphenicol as endocrine disruptors in water. Adsorption, 19, 619–630. https://doi.org/10.1007/s10450-013-9485-8

    Article  CAS  Google Scholar 

  • Debasmita, N., & Rajasimman, M. (2013). Optimization and kinetics studies on biodegradation of atrazine using mixed microorganisms. Alexandria Engineering Journal, 52(3), 499–505. https://doi.org/10.1016/j.aej.2013.06.008

    Article  Google Scholar 

  • Du, B., Fan, G., Yu, W., Yang, S., Zhou, J., & Luo, J. (2020). Occurrence and risk assessment of steroid estrogens in environmental water samples: A five-year worldwide perspective. Environmental Pollution, 267, 115405.

  • el Telib, A. E., El-Naas, M. H., & Acio, J. A. (2017). Biodegradation of BTEX: Optimization through response surface methodology. American Journal of Engineering and Applied Sciences, 10(1), 20–31. https://doi.org/10.3844/ajeassp.2017.20.31

    Article  Google Scholar 

  • Fujii, K., Kikuchi, S., Satomi, M., Ushio-Sata, N., & Morita, N. (2002). Degradation of 17β-estradiol by a gram-negative bacterium isolated from activated sludge in a sewage treatment plant in Tokyo, Japan. Applied and Environmental Microbiology, 68(4), 2057–2060. https://doi.org/10.1128/AEM.68.4.2057-2060.2002

    Article  CAS  Google Scholar 

  • Gangola, S., Sharma, A., Bhatt, P., Khati, P., & Chaudhary, P. (2018). Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-31082-5

    Article  CAS  Google Scholar 

  • García-Morales, R., García-García, A., Orona-Navar, C., Osma, J. F., Nigam, K. D. P., & Ornelas-Soto, N. (2018). Biotransformation of emerging pollutants in groundwater by laccase from P. sanguineus CS43 immobilized onto titania nanoparticles. Journal of Environmental Chemical Engineering, 6(1), 710–717.

    Article  Google Scholar 

  • Haiyan, R., Shulan, J., ud din Ahmad, N., Dao, W., & Chengwu, C. (2007). Degradation characteristics and metabolic pathway of 17α-ethynylestradiol by Sphingobacterium sp. JCR5. Chemosphere, 66(2), 340–346. https://doi.org/10.1016/j.chemosphere.2006.04.064

    Article  CAS  Google Scholar 

  • Hanselman, T. A., Graetz, D. A., & Wilkie, A. C. (2003). Manure-borne estrogens as potential environmental contaminants: a review. Environmental Science & Technology, 37(24), 5471–5478.

    Article  CAS  Google Scholar 

  • Hirai, N., Nanba, A., Koshio, M., Kondo, T., Morita, M., & Tatarazako, N. (2006). Feminization of Japanese medaka (Oryzias latipes) exposed to 17β-estradiol: Effect of exposure period on spawning performance in sex-transformed females. Aquatic toxicology, 79(3), 288–295.

    Article  CAS  Google Scholar 

  • Ivanov, V., Lim, J. J., Stabnikova, O., & Gin, K. Y. (2010). Biodegradation of estrogens by facultative anaerobic iron-reducing bacteria. 45, 284–287. https://doi.org/10.1016/j.procbio.2009.09.017

  • Jiang, L.-h, Liu, Y.-g, Zeng, G.-m, Xiao, F.-y, Hu, X.-j, Hu, X., et al. (2016). Removal of 17β-estradiol by few-layered graphene oxide nanosheets from aqueous solutions: External influence and adsorption mechanism. Chemical Engineering Journal, 284, 93–102. https://doi.org/10.1016/j.cej.2015.08.139

    Article  CAS  Google Scholar 

  • Ke, J., Zhuang, W., Gin, K. Y. H., Reinhard, M., Hoon, L. T., & Tay, J. H. (2007). Characterization of estrogen-degrading bacteria isolated from an artificial sandy aquifer with ultrafiltered secondary effluent as the medium. Applied Microbiology and Biotechnology, 75(5), 1163–1171. https://doi.org/10.1007/s00253-007-0923-y

    Article  CAS  Google Scholar 

  • Khatoon, H., & Rai, J. P. N. (2020). Optimization studies on biodegradation of atrazine by Bacillus badius ABP6 strain using response surface methodology. Biotechnology Reports, 26. https://doi.org/10.1016/j.btre.2020.e00459

  • Kidd, K. A., Blanchfield, P. J., Mills, K. H., Palace, V. P., Evans, R. E., Lazorchak, J. M., & Flick, R. W. (2007). Collapse of a fish population after exposure to a synthetic estrogen. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 8897–8901. https://doi.org/10.1073/pnas.0609568104

    Article  CAS  Google Scholar 

  • Kuch, H. M., & Ballschmiter, K. (2001). Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environmental Science and Technology, 35(15), 3201–3206. https://doi.org/10.1021/es010034m

    Article  CAS  Google Scholar 

  • Li, M., Zhao, X., Zhang, X., Wu, D., & Leng, S. (2018). Biodegradation of 17 β -estradiol by bacterial co-culture isolated from manure. (February), 1–8. https://doi.org/10.1038/s41598-018-22169-0

  • Liu, N., Shi, Y.-e, Li, J., Zhu, M., & Zhang, T. (2020). Isolation and characterization of a new highly effective 17β-estradiol-degrading Gordonia sp. strain R9. 3 Biotech, 10(4), 1–10. https://doi.org/10.1007/s13205-020-2156-z

    Article  Google Scholar 

  • Liu, Z.-h, Lu, G.-n, Yin, H., & Dang, Z. (2015). Do we underestimate the concentration of estriol in raw municipal wastewater? Environmental Science and Pollution Research, 22(6), 4753–4758. https://doi.org/10.1007/s11356-014-3981-6

    Article  CAS  Google Scholar 

  • Margesin, R., & Schinner, F. (1997). Efficiency of indigenous and inoculated cold-adapted soil microorganisms for biodegradation of diesel oil in alpine soils. Applied and Environmental Microbiology, 63(7), 2660–2664. https://doi.org/10.1128/aem.63.7.2660-2664.1997

    Article  CAS  Google Scholar 

  • Maya, K., Singh, R. S., Upadhyay, S. N., & Dubey, S. K. (2011). Kinetic analysis reveals bacterial efficacy for biodegradation of chlorpyrifos and its hydrolyzing metabolite TCP. Process Biochemistry, 46(11), 2130–2136. https://doi.org/10.1016/j.procbio.2011.08.012

    Article  CAS  Google Scholar 

  • Mulchandani, A., Luong, J. H. T., & Groom, C. (1989). Substrate inhibition kinetics for microbial growth and synthesis of poly-β-hydroxybutyric acid by Alcaligenes eutrophus ATCC 17697. Applied Microbiology and Biotechnology, 30(1), 11–17. https://doi.org/10.1007/BF00255990

    Article  CAS  Google Scholar 

  • Mustafa, S. M., Chua, L. S., & El-Enshasy, H. A. (2019). Effects of agitation speed and kinetic studies on probiotication of pomegranate juice with lactobacillus casei. Molecules, 24(13). https://doi.org/10.3390/molecules24132357

  • Negi, G., Srivastava, A., & Sharma, A. (2014). In situ biodegradation of endosulfan, imidacloprid, and carbendazim using indigenous bacterial cultures of agriculture fields of Uttarakhand, India. International Journal of Biological, Veterinary, Agricultural and Food Engineering, 8(9), 973–981.

    Google Scholar 

  • Pandey, A., Jain, R., Sharma, A., Dhakar, K., Kaira, G. S., Rahi, P., et al. (2019). 16S rRNA gene sequencing and MALDI-TOF mass spectrometry based comparative assessment and bioprospection of psychrotolerant bacteria isolated from high altitudes under mountain ecosystem. SN Applied Sciences, 1(3), 278. https://doi.org/10.1007/s42452-019-0273-2

    Article  CAS  Google Scholar 

  • Pang, Y. L., Abdullah, A. Z., & Bhatia, S. (2011). Optimization of sonocatalytic degradation of Rhodamine B in aqueous solution in the presence of TiO2 nanotubes using response surface methodology. Chemical Engineering Journal, 166(3), 873–880. https://doi.org/10.1016/j.cej.2010.11.059

    Article  CAS  Google Scholar 

  • Paula, J., Kosunen, T., Fotw, T., & Adlercreutz, H. (1979). In vitro metabolism of estrogens isolated intestinal microorganism and by human fecal microflora. Journal of Steroid Biochemistry, 13, 345–349.

    Google Scholar 

  • Providenti, M. A., Lee, H., & Trevors, J. T. (1993). Selected factors limiting the microbial degradation of recalcitrant compounds. Journal of Industrial Microbiology and Biotechnology, 12(6), 379–395.

    Article  CAS  Google Scholar 

  • Singh, B. K., Walker, A., Morgan, J. A. W., & Wright, D. J. (2003). Role of soil pH in the development of enhanced biodegradation of fenamiphos. Applied and Environmental Microbiology, 69(12), 7035–7043. https://doi.org/10.1128/AEM.69.12.7035-7043.2003

    Article  CAS  Google Scholar 

  • Thathola, P., Agnihotri, V., & Pandey, A. (2021). Microbial Degradation of caffeine using himalayan psychrotolerant Pseudomonas sp.GBPI_Hb5 (MCC 3295). Current Microbiology, 78(11), 3924–3935. https://doi.org/10.1007/s00284-021-02644-0

    Article  CAS  Google Scholar 

  • van Leeuwen, C. J., & Vermeire, T. G. (2007). Risk assessment of chemicals (2nd ed.). Springer.

    Book  Google Scholar 

  • Wang, Y., Nisenblat, V., Tao, L., Zhang, X., Li, H., & Ma, C. (2019). Combined estrogen-progestin pill is a safe and effective option for endometrial hyperplasia without atypia: a three-year single center experience. Journal of Gynecologic Oncology, 30(3).

  • Yoshimoto, T., Nagai, F., Fujimoto, J., Watanabe, K., Mizukoshi, H., Makino, T., et al. (2004). Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants. Applied and Environmental Microbiology, 70(9), 5283–5289. https://doi.org/10.1128/AEM.70.9.5283-5289.2004

    Article  CAS  Google Scholar 

  • Zhao, H., Tian, K., Qiu, Q., Wang, Y., Zhang, H., Ma, S., et al. (2018). Genome analysis of Rhodococcus Sp. DSSKP-R-001: A highly effective β-estradiol-degrading bacterium. International Journal of Genomics, 2018. https://doi.org/10.1155/2018/3505428

  • Zdarta, J., Meyer, A. S., Jesionowski, T., & Pinelo, M. (2019). Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: A critical review. Biotechnology Advances, 37(7), 107401. https://doi.org/10.1016/j.biotechadv.2019.05.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Director GBP-NIHE for extending the facilities and the Department of Science and Technology-Water Technology Initiative (DST-WTI) [DST/TM/WTI/2K15/63] is duly acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasudha Agnihotri.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thathola, P., Agnihotri, V., Pandey, A. et al. Biodegradation of Steroid Hormone Estriol by Pseudomonas proteolytica GBPI_Hb61, a Psychrotolerant Himalayan Bacteria. Water Air Soil Pollut 235, 289 (2024). https://doi.org/10.1007/s11270-024-07079-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-07079-4

Keywords

Navigation