Skip to main content

Advertisement

Log in

Environmental Contamination and Health Risk Assessment of Heavy Metals in the Stream Sediments of Oued Kasseb (Northerwest of Tunisia) in the Vicinity of Abandoned Pb–Zn Mine

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Mining activities have a positive impact on the global economy by increasing the socio-economic impact of the country's economic growth. However, they pose a high environmental risk of damaging sediments, and aquatic ecosystems by accumulating potentially toxic elements. Located in northern Tunisia, Oued Kasseb is one of the outlets of the Medjerda River, Tunisia's main watercourse and a major source of irrigation and drinking water. Oued Kasseb is the nearest watercourse to the Pb–Zn mining district of Djebel Hallouf-Sidi Bouaouane, a century-old mine (1890–1986). This study focuses on evaluating the spatial distribution of heavy metals (arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn)), their degree of contamination, using pollution indices, and on assessing the ecological and human health risks posed in the Oued Kasseb study area. The obtained heavy metal concentrations were in the following order: Pb > Zn > As > Cr > Ni > Cu > Cd. The spatial distribution shows that relatively high concentrations of metals were found in the vicinity of the Pb–Zn abandoned mine. The geoaccumulation index (I geo), the enrichment factor (EF), the contamination factor (CF), and the potential ecological risk index (RI) showed that the sediments are highly contaminated with As, Cd, Pb, and Zn, especially for sites surrounding the mine. The statistical analysis shows that As, Cd, Cu, and Pb are correlated strongly with Zn and appeared in the first component (F1:70.89%). The noncancerogenic risk revealed that As damages the children whereas it is not harmful to the adult group. The abandoned Pb–Zn mines are therefore the main source of heavy metals in the Oued Kasseb, causing serious environmental pollution and posing significant health risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  • Adimalla, N., & Wang, H. (2018). Distribution, contamination, and health risk assessment of heavy metals in surface soils from northern Telangana, India. Arabian Journal of Geosciences, 11, 1–15. https://doi.org/10.1007/s12665-015-5151-7

    Article  CAS  Google Scholar 

  • Al-Hobaib, A. S., Al-Jaseem, Q. K., Baioumy, H. M., et al. (2013). Heavy metals concentrations and usability of groundwater at Mahd Adh Dhahab gold mine Saudi Arabia. Arab J Geosci, 6, 259–270. https://doi.org/10.1007/s12517-011-0344-1

    Article  CAS  Google Scholar 

  • Ayari, J., Barbieri, M., Agnan, Y., Sellami, A., Braham, A., Dhaha, F., & Charef, A. (2021). Trace element contamination in the mine-affected stream sediments of Oued Rarai in north-western Tunisia : a river basin scale assessment. Environmental Geochemistry and Health, 1–16. https://doi.org/10.1007/s10653-021-00887-1

  • Ayed, L. B., Horry, M., Sabbahi, S., Nouiri, I., & Karanis, P. (2022). Physico-chemical quality of the Medjerda River in Tunisia and suitability for irrigation during the moist and the dry seasons. Bulletin de la Société Royale des Sciences de Liège.

  • Bai, X. L., & Yan, C. S. (2008). Effect of lead and cadmium pollution on occupationally exposed population health in lead and zinc mining area. Journal of Environment and Health, 25(9), 760–762.

    CAS  Google Scholar 

  • Barraza, F., Maurice, L., Uzu, G., Becerra, S., López, F., Ochoa-Herrera, V., Ruals, J., & Schreck, E. (2018). Distribution, contents and health risk assessment of metal (loid) s in small-scale farms in the Ecuadorian Amazon: An insight into impacts of oil activities. Science of the Total Environment, 622, 106–120. https://doi.org/10.1016/j.scitotenv.2017.11.246

    Article  CAS  Google Scholar 

  • Belo, L. P., Orbecido, A. H., Beltran, A. B., Vallar, E. A., Galvez, M. C. D., Eusebio, R. C., Ledesma, N.A. & Deocaris, C. C. (2018). Water quality assessment of meycauayan river, Bulacan, Philippines. Sylvatrop, 28(2).

  • Ben Amor, R., Yahyaoui, A., Abidi, M., Chouba, L., & Gueddari, M. (2019). Bioavailability and assessment of metal contamination in surface sediments of rades-hamam lif coast, around meliane river (Gulf of Tunis, Tunisia, Mediterranean Sea). Journal of Chemistry, 2019. https://doi.org/10.1155/2019/4284987

  • Ben Hassene, C. N. (2006). Statistiques sur la production totale à fin 2005. Direction Générale des Mines. Tunisie. 2p.

  • Benjamin, R., Chakrapani, B. K., Devashish, K., Nagarathna, A. V., & Ramachandra, T. V. (1996). Fish mortality in Bangalore lakes, India. Electronic Green Journal, 1(6).

  • Bouhlel, S. (1993). Gitologie, mineralogie et essai de modelisation des mineralisations a F-Ba-Sr-Pb-Zn-(S) associees aux carbonates (jurassiques et cretacees) et aux diapirs triasiques : gisements de Stah-Kohol. Zriba-Guebli, Bou Jaber et Fedj-el-Adoum (Tunisie Septentrionale). These d'Etat Es-Sciences geologiques, Universite de Tunis, FST

  • Boussen, S., Sebei, A., Soubrand-Colin, M., Bril, H., Chaabani, F., & Abdeljaouad, S. (2010). Mobilization of lead-zinc rich particles from mine tailings in northern Tunisia by aeolian and run-off processes. Bulletin De La Société Géologique De France, 181(5), 459–471. https://doi.org/10.2113/gssgfbull.181.5.459

    Article  Google Scholar 

  • Candeias, C., Ávila, P., Coelho, P., & Teixeira, J. P. (2018). Mining activities: health impacts. Reference Module in Earth Systems and Environmental Sciences, 1–21. https://doi.org/10.1016/B978-0-12-409548-9.11056-5

  • Caravanos, J., Weiss, A. L., Blaise, M. J., & Jaeger, R. J. (2006). A survey of spatially distributed exterior dust lead loadings in New York City. Environmental Research, 100(2), 165–172. https://doi.org/10.1016/j.envres.2005.05.001

    Article  CAS  Google Scholar 

  • Chakroun, H. K., Souissi, F., Souissi, R., Ben Mammou, A., & Souayah, N. (2006). Etude minéralogique et géochimique des rejets miniers du district de Jebel Hallouf Sidi Bou Aouane (Nord Ouest de la Tunisie): Impact sur le sol et la végétation. Revue Méditerranéenne De L’environnement, 1, 201.

    Google Scholar 

  • Chiaradia, M., Gulson, B. L., & MacDonald, K. (1997). Contamination of houses by workers occupationally exposed in a lead–zinc copper mine and impact on blood lead concentrations in the families. Occupational and Environmental Medicine, 54, 117–124. https://doi.org/10.1136/oem.54.2.117

    Article  CAS  Google Scholar 

  • Diami, S. M., Kusin, F. M., & Madzin, Z. (2016). Potential ecological and human health risks of heavy metals in surface soils associated with iron ore mining in Pahang Malaysia. Environ Sci Pollut Res, 23, 21086–21097. https://doi.org/10.1007/s11356-016-7314-9

    Article  CAS  Google Scholar 

  • Diwa, R. R., Deocaris, C. C., Geraldo, L. D., & Belo, L. P. (2023). Ecological and health risks from heavy metal sources surrounding an abandoned mercury mine in the island paradise of Palawan, Philippines. Heliyon, 9(5). https://doi.org/10.1016/j.heliyon.2023.e15713

  • Doležalová Weissmannová, H., Mihočová, S., Chovanec, P., & Pavlovský, J. (2019). Potential ecological risk and human health risk assessment of heavy metal pollution in industrial affected soils by coal mining and metallurgy in Ostrava, Czech Republic. International Journal of Environmental Research and Public Health, 16(22), 4495. https://doi.org/10.3390/ijerph16224495

    Article  CAS  Google Scholar 

  • Dowdle, P. R., Laverman, A. M., & Oremland, R. S. (1996). Bacterial dissimilatory reduction of arsenic (V) to arsenic (III) in anoxic sediments. Applied and Environmental Microbiology, 62(5), 1664–1669.

    Article  CAS  Google Scholar 

  • Drahota, P., Rohovec, J., Filippi, M., Mihaljevič, M., Rychlovský, P., Červený, V., & Pertold, Z. (2009). Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic. Science of the Total Environment, 407(10), 3372–3384. https://doi.org/10.1016/j.scitotenv.2009.01.009

    Article  CAS  Google Scholar 

  • El-Alfy, M. A., Darwish, D. H., & El-Amier, Y. A. (2021). Land use Land cover of the Burullus Lake shoreline (Egypt) and health risk assessment of metal-contaminated sediments. Human and Ecological Risk Assessment: An International Journal, 27(4), 898–920. https://doi.org/10.1080/10807039.2020.1786667

    Article  CAS  Google Scholar 

  • El-Zeiny, A. M., & Abd El-Hamid, H. T. (2022). Environmental and human risk assessment of heavy metals at northern Nile Delta region using geostatistical analyses. The Egyptian Journal of Remote Sensing and Space Science, 25(1), 21–35. https://doi.org/10.1016/j.ejrs.2021.12.005

    Article  Google Scholar 

  • Faiz, Y., Siddique, N., & Tufail, M. (2012). Pollution level and health risk assessment of road dust from an expressway. Journal of Environmental Science and Health, Part A, 47(6), 818–829. https://doi.org/10.1080/10934529.2012.664994

    Article  CAS  Google Scholar 

  • Gabrielyan, A. V., Shahnazaryan, G. A., & Minasyan, S. H. (2018). Distribution and identification of sources of heavy metals in the Voghji River basin impacted by mining activities (Armenia). Journal of Chemistry, 2018. https://doi.org/10.1155/2018/7172426

  • Ghouma, A., Aydi, A., Martin, J. A. R., & Gasmi, M. (2022). Health risk assessment associated to heavy metal pollution levels in Mediterranean environment soils: A case study in the watershed of Sebkhet Ariana. Tunisia. Arabian Journal of Geosciences, 15(8), 716. https://doi.org/10.1007/s12517-022-09877-8

    Article  CAS  Google Scholar 

  • Gong, X., Chen, Z., & Luo, Z. (2014). Spatial distribution, temporal variation, and sources of heavy metal pollution in groundwater of a century-old nonferrous metal mining and smelting area in China. Environmental Monitoring and Assessment, 186, 9101–9116. https://doi.org/10.1007/s10661-014-4069-y

    Article  CAS  Google Scholar 

  • González-Corrochano, B., Esbrí, J. M., Alonso-Azcárate, J., Martínez-Coronado, A., Jurado, V., & Higueras, P. (2014). Environmental geochemistry of a highly polluted area: The La Union Pb–Zn mine (Castilla-La Mancha region, Spain). Journal of Geochemical Exploration, 144, 345–354. https://doi.org/10.1016/j.gexplo.2014.02.014

    Article  CAS  Google Scholar 

  • Gorny, J., Billon, G., Lesven, L., Dumoulin, D., Madé, B., & Noiriel, C. (2015). Arsenic behavior in river sediments under redox gradient: A review. Science of the Total Environment, 505, 423–434. https://doi.org/10.1016/j.scitotenv.2014.10.011

    Article  CAS  Google Scholar 

  • Grattan, J., Huxley, S., Karaki, L. A., Toland, H., Gilbertson, D., Pyatt, B., & Al Saad, Z. (2002). ‘Death... more desirable than life’? The human skeletal record and toxicological implications of ancient copper mining and smelting in Wadi Faynan, southwestern Jordan. Toxicology and Industrial Health, 18(6), 297–307. https://doi.org/10.1191/0748233702th153oa

  • Guellala, R., Tagorti, M. A., Inoubli, M. H., & Amri, F. (2012). Insights into Mejerda basin hydrogeology, Tunisia. Applied Water Science, 2, 143–155. https://doi.org/10.1007/s13201-012-0038-1

    Article  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control A Sedimentological Approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  • Hu, B., Li, G., Li, J., Bi, J., Zhao, J., & Bu, R. (2013). Spatial distribution and ecotoxicological risk assessment of heavy metals in surface sediments of the southern Bohai Bay, China. Environmental Science and Pollution Research, 20, 4099–4110. https://doi.org/10.1007/s11356-012-1332-z

    Article  CAS  Google Scholar 

  • Hudson-Edwards, K. A., Macklin, M. G., Miller, J. R., & Lechler, P. J. (2001). Sources, distribution and storage of heavy metals in the Rıo Pilcomayo Bolivia. Journal of Geochemical Exploration, 72(3), 229–250. https://doi.org/10.1016/S0375-6742(01)00164-9

    Article  CAS  Google Scholar 

  • Iordache, A. M., Nechita, C., Zgavarogea, R., Voica, C., Varlam, M., & Ionete, R. E. (2022). Accumulation and ecotoxicological risk assessment of heavy metals in surface sediments of the Olt River Romania. Scientific Reports, 12(1), 880. https://doi.org/10.1038/s41598-022-04865-0

    Article  CAS  Google Scholar 

  • Jdid, E. A., Blazy, P., Kamoun, S., Guedria, A., Marouf, B., & Kitane, S. (1999). Environmental impact of mining activity on the pollution of the Medjerda River, north-west Tunisia. Bulletin of Engineering Geology and the Environment, 57, 273–280. https://doi.org/10.1007/s100640050045

    Article  Google Scholar 

  • Jemmali, N., Souissi, F., Carranza, E. J. M., & Bouabdellah, M. (2013). Lead and sulfur isotope constraints on the genesis of the polymetallic mineralization at Oued Maden, Jebel Hallouf and Fedj Hassene carbonate-hosted Pb–Zn (As–Cu–Hg–Sb) deposits, Northern Tunisia. Journal of Geochemical Exploration, 132, 6–14. https://doi.org/10.1016/j.gexplo.2013.03.004

    Article  CAS  Google Scholar 

  • Jiang, Y., Chao, S., Liu, J., Yang, Y., Chen, Y., Zhang, A., & Cao, H. (2017). Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere, 168, 1658–1668. https://doi.org/10.1016/j.chemosphere.2016.11.088

    Article  CAS  Google Scholar 

  • Jiménez-Oyola, S., Valverde-Armas, P. E., Romero-Crespo, P., Capa D., Valdivieso, A., Coronel-León, J., Guzmán-Martínez F., & Chavez E. (2023). Heavy metal (loid) s contamination in water and sediments in a mining area in Ecuador: a comprehensive assessment for drinking water quality and human health risk. Environmental Geochemistry and Health, 1–21. https://doi.org/10.1007/s10653-023-01546-3

  • Khelfaoui, M., Medjram, M. S., Kabir, A., Zouied, D., Mehri, K., Chikha, O., & Trabelsi, M. A. (2020a). Chemical and mineralogical characterization of weathering products in mine wastes, soil, and sediment from the abandoned Pb/Zn mine in Skikda, Algeria. Environmental Earth Sciences, 79, 1–15. https://doi.org/10.1007/s12665-020-09043-x

    Article  CAS  Google Scholar 

  • Khelfaoui, M., Medjram, M. S., Kabir, A., et al. (2020b). Chemical and mineralogical characterization of weathering products in mine wastes, soil, and sediment from the abandoned Pb/Zn mine in Skikda Algeria. Environ Earth Sci, 79, 293. https://doi.org/10.1007/s12665-020-09043-x

    Article  CAS  Google Scholar 

  • Kim, S., Kwon, H. J., Cheong, H. K., Choi, K., Jang, J. Y., Jeong, W. C., Kim, D. S., Yu, S., Kim, Y. W., Lee, K. Y., Yang, S. Y., Jhung, I. J., Yang, W. H., & Hong, Y. C. (2008). Investigation on health effects of an abandoned metal mine. Journal of Korean Medical Science, 23(3), 452. https://doi.org/10.3346/jkms.2008.23.3.452

    Article  CAS  Google Scholar 

  • Kumar, V., Sharma, A., Pandita, S., Bhardwaj, R., Thukral, A. K., & Cerda, A. (2020). A review of ecological risk assessment and associated health risks with heavy metals in sediment from India. International Journal of Sediment Research, 35(5), 516–526. https://doi.org/10.1016/j.ijsrc.2020.03.012

    Article  Google Scholar 

  • Li, Y., Chen, H., & Teng, Y. (2020). Source apportionment and source-oriented risk assessment of heavy metals in the sediments of an urban river-lake system. Science of the Total Environment, 737, 140310. https://doi.org/10.1016/j.scitotenv.2020.140310

    Article  CAS  Google Scholar 

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468, 843–853. https://doi.org/10.1016/j.scitotenv.2013.08.090

    Article  CAS  Google Scholar 

  • Luo, Y., & Jia, Q. (2021). Pollution and Risk Assessment of Heavy Metals in the Sediments and Soils around Tiegelongnan Copper Deposit, Northern Tibet, China. Journal of Chemistry, 2021, 1–13. https://doi.org/10.1155/2021/8925866

    Article  CAS  Google Scholar 

  • Liu, H. Y., Probst, A., & Liao, B. H. (2005a). Mental contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, Chian). Science of the Total Environment, 339, 153–166. https://doi.org/10.1016/j.scitotenv.2004.07.030

    Article  CAS  Google Scholar 

  • Liu, Y. S., Gao, Y., Wang, K. W., Mai, X. H., Chen, G. D., & Xu, T. W. (2005b). Etiologic study on alimentary tract malignant tumor in villages of high occurrence. China Tropical Medicine, 5(5), 1139–1141.

    Google Scholar 

  • Mansouri, A. (1980). Gisements de Pb-Zn et Karstification en milieu continental : le district du Jbel Hallouf-Sidi Bou Aouane (Tunisie Septentrionale). These de doctorat, Univ. de Pierre et Marie Curie, Paris VI, 199

  • Mansouri, A. (1987). Métallogénie karstique en Tunisie septentrionale. Le gisement plombo-zincifère du Jebel Hallouf. Notes Du Service Géologique, 51, 139–153.

    Google Scholar 

  • Marove, C. A., Sotozono, R., Tangviroon, P., Tabelin, C. B., & Igarashi, T. (2022). Assessment of soil, sediment and water contaminations around open-pit coal mines in Moatize, Tete province Mozambique. Environmental Advances, 8, 100215. https://doi.org/10.1016/j.envadv.2022.100215

    Article  CAS  Google Scholar 

  • Meybeck, M., & Helmer, R. (1989). The quality of rivers : From pristine stage to global pollution. Palaeogeography, Palaeoclimatology, Palaeoecology, 75(4), 283–309. https://doi.org/10.1016/0031-0182(89)90191-0

    Article  Google Scholar 

  • Mezned, N., Abdeljaouad, S., & Boussema, M. R. (2008). Caractérisation des rejets miniers dans le bassin versant de la Mejerda en utilisant les données ASTER. Télédétection, 8(2), 83–92.

    Google Scholar 

  • Mirzabeygi, M., Abbasnia, A., Yunesian, M., Nodehi, R. N., Yousefi, N., Hadi, M., & Mahvi, A. H. (2017). Heavy metal contamination and health risk assessment in drinking water of Sistan and Baluchistan, Southeastern Iran. Human and Ecological Risk Assessment: An International Journal, 23(8), 1893–1905. https://doi.org/10.1080/10807039.2017.1322895

    Article  CAS  Google Scholar 

  • Mlayah, A., Da Silva, E. F., Rocha, F., Hamza, C. B., Charef, A., & Noronha, F. (2009). The Oued Mellègue: Mining activity, stream sediments and dispersion of base metals in natural environments, North-western Tunisia. Journal of Geochemical Exploration, 102(1), 27–36. https://doi.org/10.1016/j.gexplo.2008.11.016

    Article  CAS  Google Scholar 

  • Mlayah, A., Lachaal, F., Chekirbane, A., Khadar, S., & Da Silva, E. F. (2017). The fate of base metals in the environment and water quality in the Mellegue Watershed, Northwest Tunisia. Mine Water and the Environment, 36(2), 163. https://doi.org/10.1007/s10230-017-0430-z

    Article  CAS  Google Scholar 

  • Mlayah, A., Yoshida, M., Charef, A., Ferreira da Silva, E., Noronha, F., & Patinha, C. (2005). Impact des rejets miniers et domestiques sur la qualité des sédiments et des eaux de l’oued Mellègue (NW de la Tunisie): diagnostic des métaux lourds. In Proc, VIII Congresso de Geoquimica Actas (Vol. 2, pp. 621–625).

  • Mobtaker, M. M., & Osanloo, M. (2014). Positive impacts of mining activities on environment. Legislation, Technology and Practice of Mine Land Reclamation. Proceedings of The Beijing International Symposium Land Reclamation and Ecological Restoration, LRER (pp. 7–14).

  • Motswaiso, F. S., Nakamura, K., Watanabe, N., & Komai, T. (2019). Geochemical investigation of metals and trace elements around the abandoned Cu-Ni mine site in Selibe Phikwe, Botswana. Journal of Geoscience and Environment Protection, 7(05), 275. https://doi.org/10.4236/gep.2019.75020

    Article  Google Scholar 

  • Muller, G. M. M. G. M. G. M. G. P. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Narsimha, A., & Rajitha, S. (2018). Spatial distribution and seasonal variation in fluoride enrichment in groundwater and its associated human health risk assessment in Telangana State, South India. Human and Ecological Risk Assessment: An International Journal, 24(8), 2119–2132. https://doi.org/10.1080/10807039.2018.1438176

    Article  CAS  Google Scholar 

  • Nassiri, O., Rhoujjati, A. & EL Hachimi, M.L. Contamination, sources and environmental risk assessment of heavy metals in water, sediment and soil around an abandoned Pb mine site in North East Morocco. Environ Earth Sci 80, 96 (2021)https://doi.org/10.1007/s12665-021-09387-y

  • Nassiri, O., Rhoujjati, A., Hachimi, E. L., & M. L. (2021b). Contamination, sources and environmental risk assessment of heavy metals in water, sediment and soil around an abandoned Pb mine site in North East Morocco. Environmental Earth Sciences, 80(3), 96. https://doi.org/10.1007/s12665-021-09387-y

    Article  CAS  Google Scholar 

  • Nikolaidis, C., Zafiriadis, I., Mathioudakis, V., et al. (2010a). Heavy Metal Pollution Associated with an Abandoned Lead-Zinc Mine in the Kirki Region. NE Greece. Bull Environ Contam Toxicol, 85, 307–312. https://doi.org/10.1007/s00128-010-0079-9

    Article  CAS  Google Scholar 

  • Nikolaidis, C., Zafiriadis, I., Mathioudakis, V., & Constantinidis, T. (2010b). Heavy metal pollution associated with an abandoned lead–zinc mine in the Kirki Region, NE Greece. Bulletin of Environmental Contamination and Toxicology, 85, 307–312. https://doi.org/10.1007/s00128-010-0079-9

    Article  CAS  Google Scholar 

  • Pelfrêne, A., Douay, F., Richard, A., Roussel, H., & Girondelot, B. (2013). Assessment of potential health risk for inhabitants living near a former lead smelter. Part 2: Site-specific human health risk assessment of Cd and Pb contamination in kitchen gardens. Environmental Monitoring and Assessment, 185, 2999–3012. https://doi.org/10.1007/s10661-012-2818-3

    Article  CAS  Google Scholar 

  • Pusapukdepob, J., Sawangwong, P., Pulket, C., Satraphat, D., Saowakontha, S., & Panutrakul, S. (2007). Health risk assessment of villagers who live near a lead mining area: a case study of Klity village, Kanchanaburi Province, Thailand.

  • Qing, X., Yutong, Z., & Shenggao, L. (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety, 120, 377–385. https://doi.org/10.1016/j.ecoenv.2015.06.019

    Article  CAS  Google Scholar 

  • Ravikumar, P., Aneesul Mehmood, M., & Somashekar, R. K. (2013). Water quality index to determine the surface water quality of Sankey tank and Mallathahalli lake, Bangalore urban district, Karnataka, India. Applied Water Science, 3, 247–261. https://doi.org/10.1007/s13201-013-0077-2

    Article  CAS  Google Scholar 

  • Resongles, E., Casiot, C., Freydier, R., Dezileau, L., Viers, J., & Elbaz-Poulichet, F. (2014). Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River, Southern France. Science of the Total Environment, 481, 509–521. https://doi.org/10.1016/j.scitotenv.2014.02.078

    Article  CAS  Google Scholar 

  • Sainfeld, P. (1952). Les gîtes plombo-zincifères de Tunisie. Ann. Min. Géol. Tunis, 9, 1–285.

    Google Scholar 

  • Santelli, C. M., Welch, S. A., Westrich, H. R., & Banfield, J. F. (2001). The effect of Fe-oxidizing bacteria on Fe-silicate mineral dissolution. Chemical Geology, 180(1–4), 99–115. https://doi.org/10.1016/S0009-2541(01)00308-4

    Article  CAS  Google Scholar 

  • Sebei, A., Helali, M. A., Oueslati, W., Abdelmalek-Babbou, C., & Chaabani, F. (2018). Bioavailability of Pb, Zn, Cu, Cd, Ni and Cr in the sediments of the Tessa River: A mining area in the North-West Tunisia. Journal of African Earth Sciences, 137, 1–8. https://doi.org/10.1016/j.jafrearsci.2017.09.005

    Article  CAS  Google Scholar 

  • Shul’kin, V. M., Chernova, E. N., Khristoforova, N. K., & Kozhenkova, S. I. (2015). Effect of mining activities on the chemistry of aquatic ecosystem components. Water Resources, 42, 843-853https://doi.org/10.1134/S009780781507012X

  • Slim-Shimi, N. (1992). Minéralogie et paragenèses des gîtes polymetalliques de la zone des nappes en Tunisie. Conditions géochimiques de depôt et implications génétiques. Unpublished, Thèse d’Etat, Fac. Sci. De Tunis

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution.

  • US EPA U. (2001). Supplemental guidance for developing soil screening levels for superfund sites. Peer Review Draft, OSWER, 9355, 4-

  • USEPA, (1997). Exposure Factor Handbook.US Environmental Protection Agency: Washington DC, USA.

  • USEPA, A. (1989). Risk assessment guidance for superfund. Volume I: human health evaluation manual (part a) (p 205). EPA/540/1–89/002.

  • Varol, M., Sünbül, M. R., Aytop, H., & Yılmaz, C. H. (2020). Environmental, ecological and health risks of trace elements, and their sources in soils of Harran Plain Turkey. Chemosphere, 245, 125592. https://doi.org/10.1016/j.chemosphere.2019.125592

    Article  CAS  Google Scholar 

  • Wang, J., Lu, D., Chen, S. Y., Zheng, Z. A., & Liu, L. Q. (1994). Effects of environmental pollution on human health in lead/zinc mine of Fenghuang, Hunan Province. Chinese Journal of Public Health, 10(3), 121–122. https://doi.org/10.1007/s10661-011-2115-6

    Article  CAS  Google Scholar 

  • Yan, Y., Han, L., Yu, R. L., Hu, G. R., Zhang, W. F., Cui, J. Y., Yan, Y., & Huang, H. B. (2020). Background determination, pollution assessment and source analysis of heavy metals in estuarine sediments from Quanzhou Bay, southeast China. CATENA, 187, 104322. https://doi.org/10.1016/j.catena.2019.104322

    Article  CAS  Google Scholar 

  • Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 642, 690–700. https://doi.org/10.1016/j.scitotenv.2018.06.068

    Article  CAS  Google Scholar 

  • Younger, P. L., & Wolkersdorfer, C. (2004). Mining impacts on the fresh water environment: technical and managerial guidelines for catchment scale management. Mine Water and the Environment, 23, s2–s80. https://doi.org/10.1007/s10230-004-0028-0

    Article  Google Scholar 

  • Zhang, X., Yang, L., Li, Y., et al. (2012). Impacts of lead/zinc mining and smelting on the environment and human health in China. Environmental Monitoring and Assessment, 184, 2261–2273. https://doi.org/10.1007/s10661-011-2115-6

    Article  CAS  Google Scholar 

  • Zhao, D., Wan, S., Yu, Z., & Huang, J. (2015). Distribution, enrichment and sources of heavy metals in surface sediments of Hainan Island rivers, China. Environmental Earth Sciences, 74, 5097–5110. https://doi.org/10.1007/s12665-015-4522-4

    Article  CAS  Google Scholar 

  • Zoller, W. H., Gladney, E. S., & Duce, R. A. (1974). Atmospheric concentrations and sources of trace metals at the South Pole. Science, 183(4121), 198–200.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The heavy metal analysis of sediments samples was performed in the National Office of Mines (ONM). We are delighted to express our thanks to Dr. Jamel Ayari (ONM) for his efforts and assistance.

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

Rim Ben Amor is the supervisor of this work. Rim Ben Amor and Asma Yahyaoui wrote the main manuscript text. Asma Yahyaoui prepared figures and tables. All authors reviewed the manuscript.

Corresponding author

Correspondence to Asma Yahyaoui.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahyaoui, A., Ben Amor, R. Environmental Contamination and Health Risk Assessment of Heavy Metals in the Stream Sediments of Oued Kasseb (Northerwest of Tunisia) in the Vicinity of Abandoned Pb–Zn Mine. Water Air Soil Pollut 235, 230 (2024). https://doi.org/10.1007/s11270-024-07039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-07039-y

Keywords

Navigation