Skip to main content
Log in

Kinetics and Isotherms Studies on the Adsorption of Anionic Dyes and As (V) in Aqueous Solutions Employing Modified Chitosan-Alumina Nanocomposites (CSAO3 and CAO3)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The nanocomposite of chitosan-alumina was fabricated for the considerable adsorption of the anionic contaminants including dyes (methyl orange (MO) and reactive black 5 (RB5)) and arsenic (V) ions in the aqueous solutions. The various samples were synthesized using oxalic acid and sodium dodecyl sulfate (SDS) as modifiers. The achievements showed that the modification of the adsorbent surface by employing oxalic acid as well as the presence of SDS in the sample structure play an important role in increasing the adsorption capacity. The batch sorption tests were carried out to evaluate the different operating conditions, encompassing contact time, initial concentration of contaminants, pH, and temperature. The sorbents were characterized by XRD, FTIR, BET, TEM, and FESEM with EDAX analysis. The equilibrium adsorption was examined by the Langmuir and Freundlich isotherm models. The results indicated a better match between the experimental data with Langmuir’s isotherm. The maximum adsorption capacity was calculated to be about 370.37, 185.185, and 76.92 mg/g for MO, RB5, and As (V), respectively. The kinetic study of the adsorption also followed the pseudo-second-order equation. The reusability of the best adsorbent was studied for 5 consecutive cycles with a straightforward method, the results of which illustrated the outstanding efficiency of the recovered adsorbent. Only 10% of the adsorption capacity for arsenic ions was reduced in the fifth cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ahangari, A., Raygan, S., & Ataie, A. (2019). Capabilities of nickel zinc ferrite and its nanocomposite with CNT for adsorption of arsenic (V) ions from wastewater. Journal of Environmental Chemical Engineering, 7, 103493.

    CAS  Google Scholar 

  • Ahmadpour, A., Zabihi, M., Tahmasbi, M., & Bastami, T. R. (2010). Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions. Journal of Hazardous Materials, 182, 552–556.

    CAS  Google Scholar 

  • Alinezhad, H., Zabihi, M., & Kahfroushan, D. (2020). Design and fabrication the novel polymeric magnetic boehmite nanocomposite (boehmite@ Fe3O4@ PLA@ SiO2) for the remarkable competitive adsorption of methylene blue and mercury ions. Journal of Physics and Chemistry of Solids, 144, 109515.

    CAS  Google Scholar 

  • Aliprandini, P., Veiga, M. M., Marshall, B. G., Scarazzato, T., & Espinosa, D. C. (2020). Investigation of mercury cyanide adsorption from synthetic wastewater aqueous solution on granular activated carbon. Journal of Water Process Engineering, 34, 101154.

    Google Scholar 

  • Altinisik, A., & Yurdakoc, K. (2014). Chitosan/poly (vinyl alcohol) hydrogels for amoxicillin release. Polymer Bulletin, 71, 759–774.

    CAS  Google Scholar 

  • Amri, F., Husseinsyah, S., & Hussin, K. (2013). Effect of sodium dodecyl sulfate on mechanical and thermal properties of polypropylene/chitosan composites. Journal of Thermoplastic Composite Materials, 26, 878–892.

    Google Scholar 

  • Arumugam, T., Krishnamoorthy, P., Rajagopalan, N., Nanthini, S., & Vasudevan, D. (2019). Removal of malachite green from aqueous solutions using a modified chitosan composite. International Journal of Biological Macromolecules, 128, 655–664.

    CAS  Google Scholar 

  • Banerjee, S., Dubey, S., Gautam, R. K., Chattopadhyaya, M., & Sharma, Y. C. (2019). 'Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions. Arabian Journal of Chemistry, 12, 5339–5354.

    CAS  Google Scholar 

  • Barik, B., Nayak, P. S., Achary, L. S. K., Kumar, A., & Dash, P. (2020). Synthesis of alumina-based cross-linked chitosan–HPMC biocomposite film: An efficient and user-friendly adsorbent for multipurpose water purification. New Journal of Chemistry, 44, 322–337.

    CAS  Google Scholar 

  • Boddu, V. M., Abburi, K., Talbott, J. L., Smith, E. D., & Haasch, R. (2008). Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Research, 42, 633–642.

    CAS  Google Scholar 

  • Borges, G. A., Ferreira, G. M. D., Siqueira, K. P. F., Dias, A., Navarro, K. O. N., e Silva, S. J. B., Rodrigues, G. D., & Mageste, A. B. (2020). Adsorption of organic and inorganic arsenic from aqueous solutions using MgAl-LDH with incorporated nitroprusside. Journal of Colloid and Interface Science, 575, 194–205.

    CAS  Google Scholar 

  • Bozdogan Sert, E., Turkmen, M., & Cetin, M. (2019). Heavy metal accumulation in rosemary leaves and stems exposed to traffic-related pollution near Adana-İskenderun Highway (Hatay, Turkey). Environmental Monitoring and Assessment, 191, 1–12.

    Google Scholar 

  • Cesur, A., Zeren Cetin, I., Cetin, M., Sevik, H., & Ozel, H. B. (2022). The use of Cupressus arizonica as a biomonitor of Li, Fe, and Cr pollution in Kastamonu. Water, Air, & Soil Pollution, 233, 193.

    CAS  Google Scholar 

  • Cetin, M., Aksoy, T., Bilge Ozturk, G., & Cabuk, A. (2022). Developing a model for the relationship between vegetation and wind power using remote sensing and geographic information systems technology. Water, Air, & Soil Pollution, 233, 450.

    CAS  Google Scholar 

  • Cetin, M., Aljama, A. M. O., Alrabiti, O. B. M., Adiguzel, F., Sevik, H., & Zeren Cetin, I. (2022b). Determination and mapping of regional change of Pb and Cr pollution in Ankara city center. Water, Air, & Soil Pollution, 233, 163.

    CAS  Google Scholar 

  • Cetin, M., Aljama, A. M. O., Alrabiti, O. B. M., Adiguzel, F., Sevik, H., & Zeren Cetin, I. (2022c). Using topsoil analysis to determine and map changes in Ni Co pollution. Water, Air, & Soil Pollution, 233, 293.

    CAS  Google Scholar 

  • Cetin, M., Isik Pekkan, O., Bilge Ozturk, G., Senyel Kurkcuoglu, M. A., Kucukpehlivan, T., & Cabuk, A. (2022). Examination of the change in the vegetation around the Kirka Boron mine site by using remote sensing techniques. Water, Air, & Soil Pollution, 233, 254.

    CAS  Google Scholar 

  • Cetin, M., & Jawed, A. A. (2021). The chancing of Mg concentrations in some plants grown in Pakistan depends on plant species and the growing environment. Kastamonu University Journal of Engineering and Sciences, 7, 167–174.

    Google Scholar 

  • Cetin, M., & Jawed, A. A. (2022). Variation of Ba concentrations in some plants grown in Pakistan depending on traffic density. Biomass Conversion and Biorefinery, 15, 1–7.

  • Chakrabarti, S., Dutta, B., & Apak, R. (2009). Active manganese oxide: A novel adsorbent for treatment of wastewater containing azo dye. Water Science and Technology, 60, 3017–3024.

    CAS  Google Scholar 

  • Chatterjee, S., & De, S. (2014). Adsorptive removal of fluoride by activated alumina doped cellulose acetate phthalate (CAP) mixed matrix membrane. Separation and Purification Technology, 125, 223–238.

    CAS  Google Scholar 

  • Chatterjee, S., Tran, H. N., Godfred, O.-B., & Woo, S. H. (2018). Supersorption capacity of anionic dye by newer chitosan hydrogel capsules via green surfactant exchange method. ACS Sustainable Chemistry & Engineering, 6, 3604–3614.

    CAS  Google Scholar 

  • Chen, B., Zhu, Z., Ma, J., Qiu, Y., & Chen, J. (2013). Surfactant assisted Ce–Fe mixed oxide decorated multiwalled carbon nanotubes and their arsenic adsorption performance. Journal of Materials Chemistry A, 1, 11355–11367.

    CAS  Google Scholar 

  • Cheng, J.-S., Du, J., & Zhu, W. (2012). Facile synthesis of three-dimensional chitosan–graphene mesostructures for reactive black 5 removal. Carbohydrate Polymers, 88, 61–67.

    CAS  Google Scholar 

  • Cicek, N., Erdogan, M., Yucedag, C., & Cetin, M. (2022). Improving the detrimental aspects of salinity in salinized soils of arid and semi-arid areas for effects of vermicompost leachate on salt stress in seedlings. Water, Air, & Soil Pollution, 233, 197.

    CAS  Google Scholar 

  • Çınar, S., Kaynar, Ü. H., Aydemir, T., Kaynar, S. C., & Ayvacıklı, M. (2017). An efficient removal of RB5 from aqueous solution by adsorption onto nano-ZnO/chitosan composite beads. International Journal of Biological Macromolecules, 96, 459–465.

    Google Scholar 

  • Dehghani, M. H., Maroosi, M., & Heidarinejad, Z. (2018). Experimental dataset on adsorption of arsenic from aqueous solution using chitosan extracted from shrimp waste: Optimization by response surface methodology with central composite design. Data in Brief, 20, 1415–1421.

    Google Scholar 

  • Ebadollahzadeh, H., & Zabihi, M. (2020). Competitive adsorption of methylene blue and Pb (II) ions on the nano-magnetic activated carbon and alumina. Materials Chemistry and Physics, 248, 122893.

    CAS  Google Scholar 

  • Gandhi, M. R., Kousalya, G., Viswanathan, N., & Meenakshi, S. (2011). Sorption behaviour of copper on chemically modified chitosan beads from aqueous solution. Carbohydrate Polymers, 83, 1082–1087.

    CAS  Google Scholar 

  • Gandhi, M. R., Viswanathan, N., & Meenakshi, S. (2010). Preparation and application of alumina/chitosan biocomposite. International Journal of Biological Macromolecules, 47, 146–154.

    Google Scholar 

  • Ghasemi, S. S., Hadavifar, M., Maleki, B., & Mohammadnia, E. (2019). Adsorption of mercury ions from synthetic aqueous solution using polydopamine decorated SWCNTs. Journal of Water Process Engineering, 32, 100965.

    Google Scholar 

  • Gupta, A., Chauhan, V. S., & Sankararamakrishnan, N. (2009). Preparation and evaluation of iron–chitosan composites for removal of As (III) and As (V) from arsenic contaminated real life groundwater. Water Research, 43, 3862–3870.

    CAS  Google Scholar 

  • Gupta, V. K., Pathania, D., & Sharma, S. (2017). Adsorptive remediation of Cu (II) and Ni (II) by microwave assisted H3PO4 activated carbon. Arabian Journal of Chemistry, 10, S2836–S2844.

    CAS  Google Scholar 

  • Hassan, A., Abdel-Mohsen, A., & Elhadidy, H. (2014). Adsorption of arsenic by activated carbon, calcium alginate and their composite beads. International Journal of Biological Macromolecules, 68, 125–130.

    CAS  Google Scholar 

  • Iida, Y., Kozuka, T., Tuziuti, T., & Yasui, K. (2004). Sonochemically enhanced adsorption and degradation of methyl orange with activated aluminas. Ultrasonics, 42, 635–639.

    CAS  Google Scholar 

  • Jagtap, S., Yenkie, M., Labhsetwar, N., & Rayalu, S. (2011). Defluoridation of drinking water using chitosan based mesoporous alumina. Microporous and Mesoporous Materials, 142, 454–463.

    CAS  Google Scholar 

  • Kabiraz, M. K., Jahan, I. A., Masum, S. M., Islam, M. M., Hassan, S. M., Saha, B., & Nur, H. P. (2016). Effective removal of chromium (VI) ions from tannery effluent using chitosan-alumina composite. International Research Journal of Pure and Applied Chemistry, 10(3), 1–12.

  • Kim, T.-Y., Park, S.-S., & Cho, S.-Y. (2012). Adsorption characteristics of reactive black 5 onto chitosan beads cross-linked with epichlorohydrin. Journal of Industrial and Engineering Chemistry, 18, 1458–1464.

    CAS  Google Scholar 

  • Kumar, A. S. K., & Jiang, S.-J. (2016). Chitosan-functionalized graphene oxide: A novel adsorbent an efficient adsorption of arsenic from aqueous solution. Journal of Environmental Chemical Engineering, 4, 1698–1713.

    CAS  Google Scholar 

  • Li, W.-Y., Liu, J., Chen, H., Deng, Y., Zhang, B., Wang, Z., Zhang, X., & Hong, S. (2013). Application of oxalic acid cross-linking activated alumina/chitosan biocomposites in defluoridation from aqueous solution. Investigation of adsorption mechanism. Chemical engineering journal, 225, 865–872.

    CAS  Google Scholar 

  • Luo, W., Bai, Z., & Zhu, Y. (2018). Fast removal of Co (ii) from aqueous solution using porous carboxymethyl chitosan beads and its adsorption mechanism. RSC Advances, 8, 13370–13387.

    CAS  Google Scholar 

  • Massoudinejad, M., Ghaderpoori, M., Shahsavani, A., Jafari, A., Kamarehie, B., Ghaderpoury, A., & Amini, M. M. (2018). Ethylenediamine-functionalized cubic ZIF-8 for arsenic adsorption from aqueous solution: Modeling, isotherms, kinetics and thermodynamics. Journal of Molecular Liquids, 255, 263–268.

    CAS  Google Scholar 

  • Mosaferi, M., & Mesdaghinia, A. R. (2005). Removal of Arsenic from drinking water using modified activated alumina. Journal of Water and Wastewater, 55, 2–14.

    Google Scholar 

  • Mubarak, N. S. A., Chuan, T., Khor, H., Jawad, A. H., Wilson, L., & Sabar, S. (2021). Immobilized Fe-loaded chitosan film for methyl orange dye removal: Competitive ions, reusability, and mechanism. Journal of Polymers and the Environment, 29, 1050–1062.

    Google Scholar 

  • Paige, C., Snodgrass, W., Nicholson, R., & Scharer, J. (1997). An arsenate effect on ferrihydrite dissolution kinetics under acidic oxic conditions. Water Research, 31, 2370–2382.

    CAS  Google Scholar 

  • Pérez-Calderón, J., Scian, A., Ducos, M., Santos, V. & Zaritzky, N. E.: 2021, Performance of oxalic acid-chitosan/alumina ceramic biocomposite for the adsorption of a reactive anionic azo dye. Environmental Science and Pollution Research, 28, 67032–67052.

  • Piyamongkala, K., Mekasut, L., & Pongstabodee, S. (2008). Cutting fluid effluent removal by adsorption on chitosan and SDS-modified chitosan. Macromolecular Research, 16, 492–502.

    CAS  Google Scholar 

  • Reghioua, A., Barkat, D., Jawad, A. H., Abdulhameed, A. S., Rangabhashiyam, S., Khan, M. R., & ALOthman, Z. A. (2021). Magnetic chitosan-glutaraldehyde/zinc oxide/Fe 3 O 4 nanocomposite: Optimization and adsorptive mechanism of Remazol Brilliant Blue R dye removal. Journal of Polymers and the Environment, 29(12), 1–16.

  • Rivera-Utrilla, J., Sánchez-Polo, M., Gómez-Serrano, V., Álvarez, P., Alvim-Ferraz, M., & Dias, J. (2011). Activated carbon modifications to enhance its water treatment applications. An overview. Journal of hazardous materials, 187, 1–23.

    CAS  Google Scholar 

  • Sadeghi, M. H., Tofighy, M. A., & Mohammadi, T. (2020). One-dimensional graphene for efficient aqueous heavy metal adsorption: Rapid removal of arsenic and mercury ions by graphene oxide nanoribbons (GONRs). Chemosphere, 253, 126647.

    CAS  Google Scholar 

  • Shen, J., Li, Z., Wu, Y., Zhang, B., & Li, F. (2015). Dendrimer-based preparation of mesoporous alumina nanofibers by electrospinning and their application in dye adsorption. Chemical Engineering Journal, 264, 48–55.

    CAS  Google Scholar 

  • Sheng, G., Li, Y., Yang, X., Ren, X., Yang, S., Hu, J., & Wang, X. (2012). Efficient removal of arsenate by versatile magnetic graphene oxide composites. RSC Advances, 2, 12400–12407.

    CAS  Google Scholar 

  • Tan, G., Mao, Y., Wang, H., & Xu, N. (2020). A comparative study of arsenic (V), tetracycline and nitrate ions adsorption onto magnetic biochars and activated carbon. Chemical Engineering Research and Design, 159, 582–591.

    CAS  Google Scholar 

  • Yang, Z., Yang, H., Jiang, Z., Cai, T., Li, H., Li, H., Li, A., & Cheng, R. (2013). Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide. Journal of Hazardous Materials, 254, 36–45.

    Google Scholar 

  • Zabihi, M., Ahmadpour, A., & Asl, A. H. (2009). Removal of mercury from water by carbonaceous sorbents derived from walnut shell. Journal of Hazardous Materials, 167, 230–236.

    CAS  Google Scholar 

  • Zabihi, M., Asl, A. H., & Ahmadpour, A. (2010). Studies on adsorption of mercury from aqueous solution on activated carbons prepared from walnut shell. Journal of Hazardous Materials, 174, 251–256.

    CAS  Google Scholar 

  • Zabihi, M., Khorasheh, F., & Shayegan, J. (2015). Supported copper and cobalt oxides on activated carbon for simultaneous oxidation of toluene and cyclohexane in air. RSC Advances, 5, 5107–5122.

    CAS  Google Scholar 

  • Zouboulis, A. I., & Katsoyiannis, I. A. (2005). Recent advances in the bioremediation of arsenic-contaminated groundwaters. Environment International, 31, 213–219.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are greatly acknowledging the assistance of the Environmental Engineering Research Center, Sahand University of Technology, Tabriz, Iran.

Code Availability

Not applicable.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

MN, MZ, and MF: design, resources, writing the materials, data collection and/or processing of the materials, literature search, and analysis and/or interpretation.

Corresponding author

Correspondence to Mohammad Zabihi.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noormohammadi, M., Zabihi, M. & Faghihi, M. Kinetics and Isotherms Studies on the Adsorption of Anionic Dyes and As (V) in Aqueous Solutions Employing Modified Chitosan-Alumina Nanocomposites (CSAO3 and CAO3). Water Air Soil Pollut 235, 48 (2024). https://doi.org/10.1007/s11270-023-06756-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06756-0

Keywords

Navigation