Skip to main content
Log in

Environmental Geochemistry and Human Health Risk Assessment of Potentially Toxic Elements in Urban Soils in the Vicinity of a Pb Fire-Assay Laboratory in Ouagadougou, Burkina Faso

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A total of 30 topsoil, subsoil samples, and 11 new and used cupels were collected around a Pb fusion fire-assay laboratory in Ouagadougou, Burkina Faso, and their physico-chemical parameters and major and potentially toxic (PTE) element concentrations were determined. The results showed that the soil samples in the immediate vicinity of the used-cupel disposal site were highly polluted with Pb (up to 8900 mg/kg). Cluster analysis identified the used-cupels as the primary source of Pb, As, Cr, Cu, Ni, and Ca contamination of topsoils. Furthermore, principal component analysis revealed that abundance and mobility of Cr, Cu, Ni, and Pb were likely controlled by clay and Fe- and Al-oxyhydroxides, whereas that of As and Mn appeared to be a function of pH and oxido-reduction reactions. With pollution loading indices higher than unity, the status of all the sampling sites ranged from very high to moderate polluted. Similarly, the used-cupel disposal site had a very high average ecological risk index compared to the two relatively distant sites. Lead, As, and Cr proved to have non-carcinogenic effects on children in all sites, whereas these elements only showed non-carcinogenic effects on adults in the used-cupel disposal site. Direct ingestion was the major pathway of PTE exposure. The carcinogenic risk index for all sites and all elements exceeded the threshold. Moreover, the average total carcinogenic risk indices for Cr, Ni, As, and Pb in all sites were high enough to pose lifetime cancer risks to the exposed population with the used-cupel disposal site having the highest average value. Urgent remediation is necessary to prevent the spread of pollution to larger areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  • Abdu, N., Agbenin, J. O., & Buerkert, A. (2011). Geochemical assessment, distribution, and dynamics of trace elements in urban agricultural soils under long-term wastewater irrigation in Kano, northern Nigeria. Journal of Plant Nutrition and Soil Science, 174(3), 447–458.

    Article  CAS  Google Scholar 

  • Abrahim, G. M., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland. New Zealand. Environmental Monitoring and Assessment, 136(1–3), 227–238.

    CAS  Google Scholar 

  • Adamo, P., Agrelli, D., & Zampella, M. (2018). Chemical speciation to assess bioavailability, bioaccessibility and geochemical forms of potentially toxic metals (PTMs) in polluted soils.Chapter 9. In B. De Vivo, H. E. Belkin, & A. Lima (Eds.), Environmental geochemistry, site characterization, data analysis and case histories (2nd ed., pp. 153–194). Elsevier

  • Ahmad, I., Khan, B., Asad, N., Mian, I. A., & Jamil, M. (2019). Traffic-related lead pollution in roadside soils and plants in Khyber Pakhtunkhwa, Pakistan: Implications for human health. International Journal of Environmental Science & Technology, 16, 8015–8022.

    Article  CAS  Google Scholar 

  • Ajmone-Marsan, F., Biasioli, M., Kralj, T., Grčman, H., Davidson, C. M., Hursthouse, A. S., Madrid, L., & Rodrigues, S. (2008). Metals in particle-size fractions of the soils of five European cities. Environmental Pollution, 152, 73–81.

    Article  CAS  Google Scholar 

  • Alijagić, J., & Šajn, R. (2011). Distribution of chemical elements in an old metallurgical area, Zenica (Bosnia and Herzegovina). Geoderma, 162, 71–85.

    Article  Google Scholar 

  • Alloway, B. J. (1995). Heavy metals in soils. Blackie Academic and Professional.

    Book  Google Scholar 

  • Argyraki, A., & Kelepertzis, E. (2014). Urban soil geochemistry in Athens, Greece: The importance of local geology in controlling the distribution of potentially harmful trace elements. Science of the Total Environment, 482–483, 366–377.

    Article  Google Scholar 

  • Antoniadis, V., Shaheen, S. M., Boersch, J., Frohne, T., Du Laing, G., & Rinklebe, J. (2017). Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. Journal of Environmental Management, 186, 192–200.

    Article  CAS  Google Scholar 

  • Appenroth, K. J. (2010). Definition of “heavy metals” and their role in biological systems. In I. Sherameti & A. Varma (Eds.), Soil heavy metals (pp. 19–29). Springer.

    Chapter  Google Scholar 

  • Asner, G.P., Llactayo, W., Tupayachi, R. & Luna, E.R. (2013). Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proceedings of the National Academy of Sciences of the United States of America, 110, 18454–18459

  • Baker, L. R., White, P. M., Gary, M., & Pierzynski, G. M. (2011). Changes in microbial properties after manure, lime, and bentonite application to a heavy metal-contaminated mine waste. Applied Soil Ecology, 48, 1–10.

    Article  Google Scholar 

  • Balaram, V. (2008). Recent advances in the determination of PGE in exploration studies – a review. Journal of Geological Society of India, 72, 661–677.

    CAS  Google Scholar 

  • Banwart, S. A., Benasconi, S. M., Blum, W. H., de Souza, D. M., Chabaux, F., Duffy, C., Kercheva, M., Kràm, P., Lair, G. J., Ludin, L., Menon, M., Nikolaidis, N. P., Novak, M., Panagos, P., Ragnarsdottir, K. V., Robinson, D. A., de Rousseva, S., Ruiter, P., van Gaans, P., … Zhang, B. (2017). Soil functions in Earth’s critical zone: Key results and conclusion. Advances in Agronomy, 142, 1–27.

    Article  Google Scholar 

  • Barbieri, M., Nigro, A., & Sappa, G. (2015). Soil contamination evaluation by enrichment factor (EF) and geoaccumulation index (Igeo). Sense Sciences., 2(3), 94–97.

    Google Scholar 

  • Béziat, D., Dubois, M., Debat, P., Nikiéma, S., Salvi, S., & Tollon, F. (2008). Gold metallogeny in the Birimian craton of Burkina Faso (West Africa). Journal of African Earth Sciences, 50(2–4), 215–233.

    Article  Google Scholar 

  • Bhuiyan, M. A., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173, 384–392.

    Article  CAS  Google Scholar 

  • Bravo, S., Amorós, J. A., Pérez-De-Los-Reyes, C., García Navarro, F. J., Moreno, M. M., Sánchez Ormeño, M., & Higueras, P. (2017). Influence of the soil pH in the uptake and bioaccumulation of heavy metal (Fe, Zn, Cu, Pb and Mn) and other elements (Ca, K, Al Sr and Ba) in vine leaves, Castilla-La Mancha (Spain). Journal of Geochemical Exploration, 174, 79–83.

    Article  CAS  Google Scholar 

  • Bugbee, E. E. (1981). A textbook of fire assaying (3rd ed.). Colorado School of Mines Press.

    Google Scholar 

  • CalEPA. (2005). Human-exposure-based screening numbers developed to aid estimation of cleanup costs for contaminated soil. Integrated Risk Assessment Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency.

  • Caporale, A. G., Adamo, P., Capozzi, F., Langella, G., Terribile, F., & Vinginani, S. (2018). Monitoring metal pollution in soils using portable-XRF and conventional laboratory based techniques: Evaluation of the performance and limitation according to metal properties and sources. Science of the Total Environment, 643, 516–526.

    Article  CAS  Google Scholar 

  • Carreras, H. A., Wannaz, E. D., & Pignata, M. L. (2009). Assessment of human health risk related to metals by the use of biomonitors in the province of Cordoba, Argentina. Environmental Pollution, 157, 117–122.

    Article  CAS  Google Scholar 

  • Castaing, C., Billa, M., Milesi, J. P., Thieblemont, D., Le Metour, J., Egal, E., Donzeau, M., Buerrot, C., Cocherie, A., Chevremont, P., Tegyey, M., Itard, Y., Zida, B., Ouedraogo, I., Kote, S., Kabore, B. E., Ouedraogo, C., Ki, J. C. & Zunino, C. (2003). Notice explicative de la Carte géologique et minière du Burkina Faso à 1/1 000 000. Ouagadougou, Burkina Faso.

  • Cerceau, C. I., Carvalho, C. F., Rabelo, A. C. S., dos Santos, C. G., Dias, S. M., & Vieira Varejão, G. E. V. (2016). Recovering lead from cupel waste generated in gold analysis by Pb-Fire assay. Journal of Environmental Management, 183, 771–776.

    Article  CAS  Google Scholar 

  • Cornelis, G., Johnson, C. A., Gerven, T. V., & Vandecasteele, C. (2008). Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: A review. Applied Geochemistry, 23, 955–976.

    Article  CAS  Google Scholar 

  • Corti, C. W., & Holliday, R. J. (2005). Increasing gold demand: New industrial applications. Applied Earth Science, 114, 115–121.

    Article  Google Scholar 

  • Corti, C. W., Holliday, R. J., & Thompson, D. T. (2005). Commercial aspects of gold catalysis. Applied Catalysis A: General, 291, 253–261.

    Article  CAS  Google Scholar 

  • Covelli, S., & Fantolan, G. (1997). Application of normalization procedure in determining regional geochemical baseline. Environmental Geology, 30, 34–45.

    Article  CAS  Google Scholar 

  • Dao, L., Morrison, L., & Zhang, C. (2010). Spatial variation of urban soil geochemistry in a roadside sports ground in Galway, Ireland. Science of Total Environment, 408, 1076–1084.

    Article  CAS  Google Scholar 

  • DEA. (2010). Framework for the management of contaminated land (p. 74p). Republic of South Africa.

    Google Scholar 

  • de Miguel, E., Iribarren, I., Chacón, E., Ordoñez, A., & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66, 505–513.

    Article  Google Scholar 

  • Di Bonito, M., Breward, N., Crout, N., Smith, B., Young, S. D., & Zhang, H. (2018). Chapter 10 – extraction and characterization of pore water in contaminated soils A2 - vivo, Benedetto De. In: Belkin, H.E., Lima, A.B.T.-E.G. (Second E. (Eds.). Elsevier, pp. 195–235

  • Ding, Z., & Hu, X. (2014). Ecological and human health risks from metal (loid)s in peri-urban soil in Nanjing, China. Environmental Geochemistry and Health, 36, 399–408.

    Article  CAS  Google Scholar 

  • Dorne, J. L. C. M., Fernàndez-Cruz, M. L., Bertelsen, U., Renshaw, D. W., Peltonen, K., Anadon, A., Feil, A., Sanders, P., Wester, P., & Fink-Gremmels, J. (2011). Risk assessment of Coccidostatics during feed cross-contaminations: Animal and human health aspects. Toxicology and Applied Pharmacology, 270(3), 196–203.

    Article  Google Scholar 

  • Du, Y., Gao, B., Zhou, H., Ju, X., Hoa, H., & Yin, S. (2013). Health risk assessment of heavy metals in road dusts in urban parks of Beijing, China. Procedia Environmental Sciences, 18, 299–309.

    Article  CAS  Google Scholar 

  • Ehlert, K., Mikutta, C., & Kretzschmar, R. (2014). Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite. Environmental Science & Technology, 48, 11320–11329.

    Article  CAS  Google Scholar 

  • Ezemonye, L. I., Adebayo, P. O., Enuneku, A. A., Tongo, I., & Ogbomida, E. (2018). Potential health risk consequences of heavy metal concentrations in surface water, shrimp (Macrobrachium macrobrachion) and fish (Brycinus longipinnis) from Benin River, Nigeria. Toxicology Reports, 6, 1–9.

    Article  Google Scholar 

  • Fellows, M. (2010). Gauging the long-term cost of gold mine production. Alchemist, 60, 3–6.

    Google Scholar 

  • Getaneh, W., & Alemayehu, T. (2006). Metal contamination of the environment by placer and primary gold mining in the Adola region of southern Ethiopia. Environmental Geology, 50, 339–352.

    Article  CAS  Google Scholar 

  • Guéniat, M. & White, N. (2015). A golden racket: the true source of Switzerland’s “Togolese” gold. Public Eye Report

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research., 14, 975–1001.

    Article  Google Scholar 

  • Han, Y. M., Du, P. X., Cao, J. J., & Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Science of the Total Environment, 355(1–3), 176–186.

    CAS  Google Scholar 

  • Horváth, A., Szűcs, P., & Bidló, A. (2015). Soil condition and pollution in urban soils: Evaluation of the soil quality in a Hungarian town. Journal of Soils and Sediments, 15, 1825–2183.

    Article  Google Scholar 

  • Hooda, P. S. (2010). Trace elements in soils. Wiley.

    Book  Google Scholar 

  • Hu, X. J., Wang, J. S., Liu, Y. G., Li, X., Zeng, G. M., Bao, Z. L., Zeng, X. X., Chen, A. W., & Long, F. (2011). Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 185(1), 306–314.

    Article  CAS  Google Scholar 

  • Hu, B., Jia, X., Hu, J., Xu, D., Xia, F., & Li, Y. (2017). Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China. International Journal of Environmental Research and Public Health, 14(9), 1042.

    Article  Google Scholar 

  • Huang, F., Wang, X., Lou, L., Zhou, Z., & Wu, J. (2010). Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Research, 44, 1562–1572.

    Article  CAS  Google Scholar 

  • Ihedioha, J. N., Ukoha, P. O., & Ekere, N. R. (2017). Ecological and human health risk assessment of heavy metal contamination in soil of a municipal solid waste dump in Uyo, Nigeria. Environmental Geochemistry and Health, 39, 497–515.

    Article  CAS  Google Scholar 

  • Jia, Z., Li, S., & Wang, L. (2018). Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the upper Yangtze Basin. Scientific Reports, 8, 3257.

    Article  Google Scholar 

  • Jones, G. (2005). Garden cultivation of staple crops and its implications for settlement location and continuity. World Archaeology, 37, 164–176.

    Article  Google Scholar 

  • Juvonen, R., & Kontas, E. (1999). Comparison of three analytical methods in the determination of gold in six finnish gold ores, including a study on sample preparation and sampling. Journal of Geochemical Exploration, 65, 219–229.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed., p. 520). Boca Raton FL: CRC Press.

  • Kaiser, H. F. (1958). The varimax criteria for analytical rotation in factor analysis. Psychometrika, 23, 187–200.

    Article  Google Scholar 

  • Khaledian, Y., Kiani, F., & Ebrahimi, E. (2012). The effect of land use change on soil and water quality in northern Iran. Journal of Mountain Science, 9(6), 798–816.

    Article  Google Scholar 

  • Klerks, P. L., & Levinton, J. S. (1989). Rapid evolution of metal resistance in a benthic oligochaete inhabiting a metal polluted site. Biological Bulletin, 176, 135–141.

    Article  CAS  Google Scholar 

  • Klitzke, S., & Lang, F. (2009). Mobilization of soluble and dispersible lead, arsenic, and antimony in a polluted, organic-rich soil – effects of pH increase and counterion valency. Journal of Environmental Quality, 38, 933–939.

    Article  CAS  Google Scholar 

  • Kumar, A., Kumar, A. M. M. S., Chaturvedi, C.-P., Shabnam, A. K., Subrahmanyam, A. A., Mondal, G. R., Gupta, D. K., Mlyan, S. K., Kumar, S. K., Khan, S. A., & Yadav, K. (2020). Lead toxicity Health hazards, influence on food Chain, and sustainable remediation approaches. International Journal of Environmental Research and Public Health, 17(2179), 1–33.

    CAS  Google Scholar 

  • Lafferty, B. J., Ginder-Vogel, M., & Sparks, D. L. (2010). Arsenite oxidation by a poorly crystalline manganese-oxide 1. Stirred-Flow Experiments. Environmental Science & Technology., 44, 8460–8466.

    Article  CAS  Google Scholar 

  • Landrigan, P. J., Fuller, R., Acosta, N. J. R., Adeyi, O., Arnold, R., Basu, N. N., et al. (2018). The Lancet Commission on pollution and health. Lancet, 391, 462–512.

    Article  Google Scholar 

  • Li, Y., Ji, L., Mi, W., Xie, S., & Bi, Y. (2021). Health risks from groundwater arsenic on residents in northern China coal-rich region. Science of the Total Environment, 773, 1–9.

    Article  Google Scholar 

  • Liang, Y., Yi, X., Dang, Z., Wang, Q., Luo, H., & Tang, J. (2017). Heavy metal contamination and health risk assessment in the vicinity of a tailing pond in Guangdong, China. International Journal of Environmental Research and Public Health, 14(1557), 1–17.

    Google Scholar 

  • Liar, G. J., Gerzabek, M. H., & Haberhauer, G. (2007). Sorption of heavy metals on organic and inorganic soil constituents. Environmental Chemistry Letter, 5, 23–27.

    Article  Google Scholar 

  • Likar, M., Vogel-Mikus, K., Potisek, M., Hancevic, K., Radic, T., Necemer, M., & Regvar, M. (2015). Importance of soil and vineyard management in the determination of grape vine mineral composition. Science of the Total Environment, 505, 724–731.

    Article  CAS  Google Scholar 

  • Luo, X. S., Yu, S., Zhu, Y. G., & Li, X. D. (2012). Trace metal contamination in urban soils of China. Science of the Total Environment, 421–422, 17–30.

    Article  Google Scholar 

  • Majer, A. P., Petti, M. A. V., Corbisier, T. N., Ribeiro, A. P., Theophilo, C. Y. S., de Lima Ferreira, P. A., & Figueira, R. C. L. (2014). Bioaccumulation of potentially toxic trace elements in benthic organisms of Admiralty Bay (King George Island, Antarctica). Marine Pollution Bulletin, 79(1), 321–325.

    Article  CAS  Google Scholar 

  • Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Science of the Total Environment, 300, 229–243.

    Article  CAS  Google Scholar 

  • Markwitz, V., Hein, K. A. A., & Miller, J. (2016). Compilation of West African minerals deposits: Spatial distribution and mineral endowment. Precambrian Research, 274(61), 81.

    Google Scholar 

  • Marques, J. J., Schulze, D. G., Curi, N., & Mertzman, S. A. (2004). Major element geochemistry and geomorphic relationships in Brazilian Cerrado soils. Geoderma, 119, 179–195.

    Article  CAS  Google Scholar 

  • Marschner, P. (2012). Nutrition of higher plants (3rd ed.). Elsevier.

    Google Scholar 

  • Massart, D. L., & Kaufman, L. (1983). The interpretation of analytical chemical data by the use of cluster analysis. Wiley.

    Google Scholar 

  • McBride, M. (1994). Environmental chemistry of soils. Oxford University Press.

    Google Scholar 

  • Minnikova, T. V., Denisova, T. V., Mandzhieva, S. S., Kolesnikov, S. I., Minkina, T. M., Chaplygin, V. A., Burachevskaya, M. V., Sushkova, S. N., & Bauer, T. V. (2017). Assessing the effect of heavy metals from the Novocherkassk power station emissions on the biological activity of soils in the adjacent areas. Journal of Geochemical Exploration, 174, 70–78.

    Article  CAS  Google Scholar 

  • Mirzaei, M., Marofi, S., Solgi, E., Abbasi, M., Karimi, R., & Riyahi Bakhtyari, H. R. (2019). Ecological and health risks of soil and grape heavy metals in long-term fertilized vineyards (Chaharmahal and Bakhtiari province of Iran). Environmental Geochemistry and Health, 42(1), 27–43.

    Article  Google Scholar 

  • Müller, G. (1981). Die Schwermetallbelastung der sedimente des Neckars und seiner Nebenflusse: Eine Bestandsaufnahme. Chemiker Zeitung, 105, 157–164.

    Google Scholar 

  • Muir, A., Mitchell, J., Flatman, S. R., & Sabbagha, C. (2005). A practical guide to retreatment of gold processing residues. Minerals Engineering, 18, 811–824.

    Article  CAS  Google Scholar 

  • Pitcairn, I. K. (2011). Background concentrations of gold in different rock types. Transactions of the Institution of Mining and Metallurgy b., 120, 31–38.

    CAS  Google Scholar 

  • Pokorny, B., von Lübke, C., Dayamba, S. D., & Helga Dickow, H. (2019). All the gold for nothing? Impacts of mining on rural livelihoods in Northern Burkina Faso. World Development, 119, 23–39.

    Article  Google Scholar 

  • Pulleman, M., Creamer, R., Hamer, U., Helder, J., Pelosi, C., Peres, G., & Rutgers, M. (2012). Soil biodiversity, biological indicators and soil ecosystem services an overview of European approaches. Current Opinion in Environmental Sustainability, 4(5), 529–538.

    Article  Google Scholar 

  • Qing, X., Yutong, Z., & Shenggao, L. (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety, 120, 377–385.

    Article  CAS  Google Scholar 

  • Rahman, I. M. M. & Begum, Z. A. (2019). Introductory chapter: how to assess metal contamination in soils? In Z. A. Begum, I. M. M. Rahman, & H. Hasegawa (Eds.), Metals in soil—Contamination and remediation (pp. 1–9). IntechOpen.

  • Ryan, J. D., & Windom, H. L. (1988). A geochemical and statistical approach for assessing metal pollution in coastal sediments. In U. Seeliger, L. D. de Lacerda, S. R. Patchineelam (Eds.), Metals in coastal environments of Latin America (pp. 47–58). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-71483-2_6

  • Reimann, C., & De Caritat, P. (2005). Distinguishing between natural and anthropogenic sources for elements in the environment: Regional geochemical surveys versus enrichment factors. Sciences of the Total Environment, 337, 91–107.

    Article  CAS  Google Scholar 

  • Reyment, R. A., & Jöreskog, K. G. (1993). Applied factor analysis in the natural sciences. Cambridge University Press.

    Book  Google Scholar 

  • Rinklebe, J., Antoniadis, V., Shaheen, S. M., Rosche, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment International, 126, 76–88.

    Article  CAS  Google Scholar 

  • Robertson, M., & Peters, L. (2016). West African goldfields. Episodes, 39, 155–176.

    Article  Google Scholar 

  • Rosano, M., Gracía-Ruiz, E., McIontosh, K. S., Hinrichs, J., Deconninck, I., & Vanhaecke, F. (2006). Comparison of the solid sampling techniques laser ablation-ICP-MS, glow discharge-MS and spark-OES for the determination of platinum group metals in Pb buttons obtained by fire assay of platiniferous ores. Journal of Analytical Atomic Spectrometry, 21, 899–909.

    Article  Google Scholar 

  • Saidi, D. (2012). Importance and role of cation exchange capacity on the physicals properties of the Cheliff saline soils (Algeria). Procedia Engineering, 33, 435–449.

    Article  CAS  Google Scholar 

  • Salvarredy-Aranguren, M. M., Probst, A., Roulet, M., & Isaure, M. P. (2008). Contamination of surface waters by mining wastes in the Milluni valley (Cordillera Real, Bolivia): Mineralogical and hydrological influences. Applied Geochemistry, 23(5), 299–324.

    Article  Google Scholar 

  • Scullett-Dean, G., Hamilton, J. L., Repina, O., Brand, H. E. A., Burton, E. D., Saunders, M., & Santini, T. C. (2023). Uptake and incorporation of Al, Cr, V, Zn and Mo in hematite: Competition, synergies and influence on structural properties. Journal of Hazardous Materials, 445, 130630.

    Article  CAS  Google Scholar 

  • Shafiee, S., & Topal, E. (2010). An overview of global gold market and gold price forecasting. Resource Policy, 35, 178–189.

    Article  Google Scholar 

  • Shahid, M., Khalid, S., Abbas, G., Shahid, N., Nadeem, M., Sabir, M., Aslam, M. & Dumat, C. (2015). Heavy metal stress and crop productivity. In K. R. Hakeem (Ed.), Crop production and global environmental issues (pp. 1–25). Cham: Springer. https://doi.org/10.1007/978-3-319-23162-4_1

  • Skrbić, B. D., Đuriŝić-Mladenović, N., Tadić, D. J., & Cvejanov, J. D. (2017). Polycyclic aromatic hydrocarbons in urban soil of Novi Sad, Serbia: Occurrence and cancer risk assessment. Environmental Science and Pollution Research, 24, 16148–16159.

    Article  Google Scholar 

  • Sinex, S. A., & Wright, D. A. (1988). Distribution of trace metals in the sediments and biota of Chesapeake Bay. Marine Pollution Bulletin, 19(9), 425–431.

    Article  CAS  Google Scholar 

  • Singh, J., & Kalamdhad, A. S. (2013). Chemical speciation of heavy metals in compost and compost ammended soil—a review. International Journal of Environmental Engineering Research, 2, 27–37.

    Google Scholar 

  • Sinha, S., Gupta, A. K., Bhatt, K., Pandey, K., Rai, U. N., & Singh, K. P. (2006). Distribution of metals in the edible plants grown at Jajmau, Kanpur (India) receiving treated tannery wastewater: Relation with physico-chemical properties of soil. Environmental Monitoring and Assessment, 115, 1–22.

    Article  CAS  Google Scholar 

  • Smith, S. R. (2009). A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environment International., 35(1), 142–156.

    Article  CAS  Google Scholar 

  • Stefanowicz, A. M., Woch, M. W., & Kapusta, P. (2014). Inconspicuous waste heaps left by historical Zn–Pb mining are hot spots of soil contamination. Geoderma, 235–236, 1–8.

    Article  Google Scholar 

  • Tang, L., Tang, X. Y., Zhu, Y. G., Zheng, M. H., & Miao, Q. L. (2005). Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environment International, 31, 822–828.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews in Geophysics., 33, 241–265.

    Article  Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In A. Luch (Ed.), Molecular, clinical and environmental toxicology (pp. 133–164). Springer.

    Chapter  Google Scholar 

  • Thongyuan, S., Khantamoon, T., Aendo, P., & Binot, A. (2020). Ecological and health risk assessment, carcinogenic and non-carcinogenic effects of heavy metals contamination in the soil from municipal solid waste landfill in Central, Thailand. Human and Ecological Risk Assessment, 27(2), 1–22.

    Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33, 566–575.

    Article  Google Scholar 

  • USEPA. (2002). Supplemental guidance for developing soil screening levels for superfund sites. USEPA.

    Google Scholar 

  • USEPA (2005). Guidelines for Carcinogen risk assessment. In Risk Assessment Forum. Washington, DC: U.S. Environmental Protection Agency.

  • USEPA. (2017). Human health risk assessment for the smurfit-stone/frenchtown mill operable unit 1 site located in Missoula County, Montana. Washington, DC: U.S. Environmental Protection Agency.

  • Vanhaecke, F., Resano, M., Koch, J., McIntosh, K., & Gunther, D. (2010). Femtosecond laser ablation-ICP-mass spectrometry analysis of a heavy metallic matrix: Determination of platinum group metals and gold in lead fire-assay buttons as a case study. Journal of Analytical Atomic Spectrometry, 25, 1259–1267.

    Article  CAS  Google Scholar 

  • Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials, 195, 355–364.

    Article  CAS  Google Scholar 

  • Wang, J., Li, S., Cui, X., Li, H., Qian, X., & Wang, C. (2016). Bioaccessibility, sources and health risk assessment of trace metals in urban park dust in Nanjing, Southeast China. Ecotoxicology and Environmental Safety, 128, 161–170.

    Article  CAS  Google Scholar 

  • Ward, J. H. (1963). Ward’s method. Journal of American Statistical Association, 58, 236–246.4th ed. Boca Raton: CRC Press

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica Et Cosmochimica Acta, 59, 1217–1239.

    Article  CAS  Google Scholar 

  • Wilson, S. C., Lockwood, P. V., Ashley, P. M., et al. (2010). The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environmental Pollution, 158, 1169–1181.

    Article  CAS  Google Scholar 

  • Wu, S., Peng, S., Zhang, X., Wu, D., Luo, W., Zhang, T., Zhou, S., Yang, G., Wan, H., & Wu, L. (2015). Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. Journal Geochemical Exploration., 148, 71–78.

    Article  CAS  Google Scholar 

  • Yongming, H., Peixuan, D., Junji, C., & Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Cent, China. Science of Total Environment, 355, 176–186.

    Article  Google Scholar 

  • Zabsonré, A., Agbo, M., & Somé, J. (2018). Gold exploitation and socioeconomic outcomes: The case of Burkina Faso. World Development, 109, 206–221.

    Article  Google Scholar 

  • Zereini, F., Alt, F., Messerschmidt, J., Wiseman, C., Feldmann, I., Von Bohlen, A., Müller, J., Liebl, K., & Püttmann, W. (2005). Concentration and distribution of heavy metals in urban airborne particulate matter in Frankfurt am Main, Germany. Environmental Science & Technology, 39, 2983–2989.

    Article  CAS  Google Scholar 

  • Zhang, R., Pian, H., Santosh, M., & Zhang, S. (2015). The history and economics of gold mining in China. Ore Geology Reviews, 65, 718–727.

    Article  Google Scholar 

  • Zöttl, H. W. (1987). Responses of forest decline to experimental fertilization. In T. C. Hutchinson & K. M. Meema (Eds.), Effects of atmospheric pollutants on forests, wetlands and agricultural ecosystems. NATO ASI Series (Vol. 16, pp. 255–265). Berlin, Heidelberg: Springer.

Download references

Acknowledgements

The authors would like to thank two anonymous reviewers for their valuable comments and suggestions which had greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aboubakar Sako.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sako, A., Coulibaly, K. & Yé, L. Environmental Geochemistry and Human Health Risk Assessment of Potentially Toxic Elements in Urban Soils in the Vicinity of a Pb Fire-Assay Laboratory in Ouagadougou, Burkina Faso. Water Air Soil Pollut 234, 712 (2023). https://doi.org/10.1007/s11270-023-06718-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06718-6

Keywords

Navigation