Skip to main content

Advertisement

Log in

Black Carbon vs Carbon Monoxide: Assessing the Impact on Indian Urban Cities

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, we concurrently determined the combined ratio of black carbon (BC) and carbon monoxide (CO) in two distinct cities in eastern India: Jamshedpur (JSR) and Kharagpur (KGP). The investigation spanned from October 2019 to January 2020, revealing BC mass concentrations of 10.06 (± 1.59) µg m−3 in JSR and 5.49 (± 1.15) µg m−3 in KGP. Additionally, the average CO concentrations measured were approximately 913.63 (± 217.85) ppbv in JSR and 507.31 (± 125.06) ppbv in KGP. Analysis of GIOVANNI NASA satellite data highlighted elevated concentrations of BC and CO in the Indo-Gangetic Plain (IGP), the foothills of the central Himalayas, and the eastern region of India. Utilizing diagnostic ratio analysis to attribute the sources of BC, we found that wood-burning contributed more significantly to the BC levels in KGP compared to JSR. The higher overall aerosol concentration in JSR was attributed to the prevalence of numerous industries and heavy traffic. Pearson correlation analysis indicated substantial correlations between BC–CO and BC–PM2.5, with correlation coefficients of r2 = 0.65 and r2 > 0.96, respectively. These results underscore the need for significant changes to be implemented, such as transitioning to alternative appliances that do not rely on fossil fuels. By adopting cleaner and more sustainable energy sources, we can effectively mitigate the adverse impacts of BC, PM2.5, and CO emissions on air quality and public health. Air back-trajectory analysis unveiled the predominant northward transmission of pollution from northern India. Additionally, air masses originating from neighboring countries such as Pakistan, Nepal, Bangladesh, and Bhutan also contributed to the pollution levels. Health risk assessments revealed estimated non-cancerous particulate health risks (Npsc) ranging from 6.27 to 25.6 in JSR and 2.02 to 8.28 in KGP, emphasizing potential health implications associated with BC exposure in the two cities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data will be provided on request.

Code Availability

Not applicable.

References

  • Akimoto, H. (2003). Global Air Quality and Pollution, 302(December), 1716–1719.

    CAS  Google Scholar 

  • Allen, G. A., Lawrence, J., & Koutrakis, P. (1999). Field validation of a semi-continuous method for aerosol black carbon (aethalometer) and temporal patterns of summertime hourly black carbon measurements in southwestern PA. Atmospheric Environment, 33(5), 817–823. https://doi.org/10.1016/S1352-2310(98)00142-3

    Article  CAS  Google Scholar 

  • Belis, C. A., Karagulian, F., Larsen, B. R., & Hopke, P. K. (2013). Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmospheric Environment, 69, 94–108. https://doi.org/10.1016/j.atmosenv.2012.11.009

    Article  CAS  Google Scholar 

  • Bi, F., Zhang, X., Xiang, S., & Wang, Y. (2020). Effect of Pd loading on ZrO2 support resulting from pyrolysis of UiO-66: Application to CO oxidation. Journal of Colloid and Interface Science, 573, 11–20.

    Article  CAS  Google Scholar 

  • Bi, F., Zhang, X., Du, Q., Yue, K., Wang, R., Li, F., Lui, N., & Huang, Y. (2021). Influence of pretreatment conditions on low-temperature CO oxidation over Pd supported UiO-66 catalysts. Molecular Catalysis, 509, 111633.

    Article  CAS  Google Scholar 

  • Bi, F., Ma, S., Gao, B., Yang, Y., Wang, L., Fei, F., Xu, J., Huang, Y., Wu, M., & Zhang, X. (2023). Non-oxide supported Pt-metal-group catalysts for efficiently CO and toluene co-oxidation: Difference in water resistance and degradation intermediates. Fuel, 344, 128147.

    Article  CAS  Google Scholar 

  • Bond, T. C., Zarzycki, C., Flanner, M. G., & Koch, D. M. (2011). Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse. Atmospheric Chemistry and Physics, 11(4), 1505–1525. https://doi.org/10.5194/acp-11-1505-2011

    Article  CAS  Google Scholar 

  • Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., et al. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171

    Article  CAS  Google Scholar 

  • Chang, T., Wang, Y., Wang, Y., Zhao, Z., Shen, Z., & Huang, Y.,... Morent, R. (2022). A critical review on plasma-catalytic removal of VOCs: Catalyst development, process parameters and synergetic reaction mechanism. Science of the Total Environment, 828, 154290. https://doi.org/10.1016/j.scitotenv.2022.154290

    Article  CAS  Google Scholar 

  • Chelani, A. B., & Gautam, S. (2022). The influence of meteorological variables and lockdowns on COVID-19 cases in urban agglomerations of Indian cities. Stochastic Environmental Research and Risk Assessment, 36, 2949–2960. https://doi.org/10.1007/s00477-021-02160-4

  • Chelani, A. B., & Gautam, S. (2023). Fractality in PM2. 5 Concentrations During the Dry and Wet Season over Indo-Gangetic Plain, India. Water, Air, & Soil Pollution, 234(8), 502. https://doi.org/10.1007/s11270-023-06521-3

  • Chen, J., Liu, Z., Yin, Z., Liu, X., Li, X., Yin, L., & Zheng, W. (2023). Predict the effect of meteorological factors on haze using BP neural network. Urban Climate, 51, 101630. https://doi.org/10.1016/j.uclim.2023.101630

    Article  Google Scholar 

  • Chen, A. L.-W., Doddridge, B. G., Dickerson, R. R., Chow, J. C., Mueller, P. K., Quinn, J., & Butler, W. A. (2001). Seasonal variations in elemental carbaon aerosol, carbon monoxide and sulfur dioxide: Implications for sources, 28(9), 1711–1714.

  • Dachs, J., & Eisenreich, S. J. (2000). Adsorption onto aerosol soot carbon dominates gas-particle partitioning of polycyclic aromatic hydrocarbons. Environmental Science and Technology, 34(17), 3690–3697. https://doi.org/10.1021/es991201+

    Article  CAS  Google Scholar 

  • Dar, A. A., Hameed, J., Huo, C., Sarfraz, M., Albasher, G., Wang, C., & Nawaz, A. (2022). Recent optimization and panelizing measures for green energy projects; insights into CO2 emission influencing to circular economy. Fuel, 314, 123094. https://doi.org/10.1016/j.fuel.2021.123094

    Article  CAS  Google Scholar 

  • Favez, O., El Haddad, I., Piot, C., Boréave, A., Abidi, E., Marchand, N., et al. (2010). Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France). Atmospheric Chemistry and Physics, 10(12), 5295–5314. https://doi.org/10.5194/acp-10-5295-2010

    Article  CAS  Google Scholar 

  • Florou, K., Papanastasiou, D. K., Pikridas, M., Kaltsonoudis, C., Louvaris, E., Gkatzelis, G. I., et al. (2017). The contribution of wood burning and other pollution sources to wintertime organic aerosol levels in two Greek cities. Atmospheric Chemistry and Physics, 17(4), 3145–3163. https://doi.org/10.5194/acp-17-3145-2017

    Article  CAS  Google Scholar 

  • Fuller, G. W., Tremper, A. H., Baker, T. D., Yttri, K. E., & Butterfield, D. (2014). Contribution of wood burning to PM10 in London. Atmospheric Environment, 87, 87–94. https://doi.org/10.1016/j.atmosenv.2013.12.037

    Article  CAS  Google Scholar 

  • Gautam, S., & Gollakota, A. R. K. (2023). Introduction to the special issue ‘‘Environmental impacts of COVID-19 pandemic”. Gondwana Research, 114, 1–3. https://doi.org/10.1016/j.gr.2022.10.021

  • Girach, I. A., Nair, V. S., Babu, S. S., & Nair, P. R. (2014). Black carbon and carbon monoxide over Bay of Bengal during W _ ICARB : Source characteristics. Atmospheric Environment, 94, 508–517. https://doi.org/10.1016/j.atmosenv.2014.05.054

    Article  CAS  Google Scholar 

  • He, C., Li, Q., Liou, K. N., Qi, L., Tao, S., & Schwarz, J. P. (2016). Microphysics-based black carbon aging in a global CTM: Constraints from HIPPO observations and implications for global black carbon budget. Atmospheric Chemistry and Physics, 16(5), 3077–3098. https://doi.org/10.5194/acp-16-3077-2016

    Article  CAS  Google Scholar 

  • Hu, F., Qiu, L., Xiang, Y., Wei, S., Sun, H., Hu, H., Weng, X., Mao, L., & Zeng, M. (2023). Spatial network and driving factors of low-carbon patent applications in China from a public health perspective. Frontiers in Public Health, 11, 1121860. https://doi.org/10.3389/fpubh.2023.1121860

    Article  Google Scholar 

  • Kelly, F. J., & Fussell, J. C. (2015). Air pollution and public health: Emerging hazards and improved understanding of risk. Environmental Geochemistry and Health, 37(4), 631–649. https://doi.org/10.1007/s10653-015-9720-1

    Article  CAS  Google Scholar 

  • Khan, M., Setu, S., Sultana, N., et al. (2023). Street dust in the largest urban agglomeration: Pollution characteristics, source apportionment and health risk assessment of potentially toxic trace elements. Stoch Environ Res Risk Assess, 37, 3305–3324. https://doi.org/10.1007/s00477-023-02432-1

    Article  Google Scholar 

  • Kumar, R. P., Perumpully, S. J., Samuel, C., et al. (2023). Exposure and health: A progress update by evaluation and scientometric analysis. Stoch Environ Res Risk Assess, 37, 453–465. https://doi.org/10.1007/s00477-022-02313-z

    Article  Google Scholar 

  • Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C., Szidat, S., et al. (2008). Source attribution of submicron organic aerosols during wintertime inversions by advanced factor analysis of aerosol mass spectra. Environmental Science and Technology, 42(1), 214–220. https://doi.org/10.1021/es0707207

    Article  CAS  Google Scholar 

  • Larsen, B. R., Gilardoni, S., Stenström, K., Niedzialek, J., Jimenez, J., & Belis, C. A. (2012). Sources for PM air pollution in the Po Plain, Italy: II. Probabilistic uncertainty characterization and sensitivity analysis of secondary and primary sources. Atmospheric Environment, 50, 203–213. https://doi.org/10.1016/j.atmosenv.2011.12.038

    Article  CAS  Google Scholar 

  • Liu, Y., Yan, C., & Zheng, M. (2018). Source apportionment of black carbon during winter in Beijing. Science of the Total Environment, 618, 531–541. https://doi.org/10.1016/j.scitotenv.2017.11.053

    Article  CAS  Google Scholar 

  • Niranjan, R., & Thakur, A. K. (2017). The toxicological mechanisms of environmental soot (black carbon) and carbon black: Focus on oxidative stress and inflammatory pathways. Frontiers in immunology, 8(JUN), 1–20. https://doi.org/10.3389/fimmu.2017.00763

  • Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Lunts, A., et al. (2002). Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. Journal of Toxicology and Environmental Health - Part A, 65(20), 1531–1543. https://doi.org/10.1080/00984100290071658

    Article  CAS  Google Scholar 

  • Oshima, T., Sasao, A., Sekijima, H., & Kotani, H. (2023). A case of carbon monoxide poisoning before a vehicle fire: Availability of volatile hydrocarbons analysis. Legal Medicine, 60, 102174.

    Article  CAS  Google Scholar 

  • Pani, S. K., Wang, S. H., Lin, N. H., Chantara, S., Lee, C. Te, & Thepnuan, D. (2020). Black carbon over an urban atmosphere in northern peninsular Southeast Asia: Characteristics, source apportionment, and associated health risks. Environmental pollution, 259. https://doi.org/10.1016/j.envpol.2019.113871

  • Peng, H., Dong, T., Zhang, L., Wang, C., Liu, W., Bao, J., ... & Dai, S. (2019). Active and stable Pt-Ceria nanowires@ silica shell catalyst: Design, formation mechanism and total oxidation of CO and toluene. Applied catalysis B: Environmental256, 117807.

  • Peters, A., Liu, E., Verrier, R. L., Schwartz, J., Gold, D. R., Mittleman, M., et al. (2000). Air pollution and incidence of cardiac arrhythmia. Epidemiology, 11(1), 11–17. https://doi.org/10.1097/00001648-200001000-00005

    Article  CAS  Google Scholar 

  • Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S. M., Baltensperger, U., et al. (2013). Recommendations for reporting black carbon measurements. Atmospheric Chemistry and Physics, 13(16), 8365–8379. https://doi.org/10.5194/acp-13-8365-2013

    Article  CAS  Google Scholar 

  • Prasad, P., Roja Raman, M., Venkat Ratnam, M., Chen, W. N., Vijaya Bhaskara Rao, S., Gogoi, M. M., et al. (2018). Characterization of atmospheric black carbon over a semi-urban site of Southeast India: Local sources and long-range transport. Atmospheric research, 213(2018), 411–421. https://doi.org/10.1016/j.atmosres.2018.06.024

  • Rupakheti, D., Adhikary, B., Praveen, P. S., Rupakheti, M., Kang, S., Mahata, K. S., et al. (2017). Pre-monsoon air quality over Lumbini, a world heritage site along the Himalayan foothills. Atmospheric Chemistry and Physics, 17(18), 11041–11063. https://doi.org/10.5194/acp-17-11041-2017

    Article  CAS  Google Scholar 

  • Sahu, L. K., Tripathi, N., & Yadav, R. (2020). Observations of trace gases in the earth’s lower atmosphere: Instrumentation and platform. Current science, 118(12), 1893–1902. https://doi.org/10.18520/cs/v118/i12/1893-1902

    Article  CAS  Google Scholar 

  • Sciare, J., D’Argouges, O., Sarda-Estève, R., Gaimoz, C., Dolgorouky, C., Bonnaire, N., et al. (2011). Large contribution of water-insoluble secondary organic aerosols in the region of Paris (France) during wintertime. Journal of Geophysical Research Atmospheres, 116(22). https://doi.org/10.1029/2011JD015756

  • Simmonds, P. G., Manning, A. J., Derwent, R. G., Ciais, P., Ramonet, M., Kazan, V., & Ryall, D. (2005). A burning question Can recent growth rate anomalies in the greenhouse gases be attributed to large-scale biomass burning events? Atmospheric environment, 39(14), 2513–2517. https://doi.org/10.1016/j.atmosenv.2005.02.018

    Article  CAS  Google Scholar 

  • Szidat, S., Jenk, T. M., Synal, H. A., Kalberer, M., Wacker, L., Hajdas, I., et al. (2006). Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C. Journal of Geophysical Research Atmospheres, 111(7). https://doi.org/10.1029/2005JD006590

  • Thepnuan, D., Chantara, S., Lee, C. T., Lin, N. H., & Tsai, Y. I. (2019). Molecular markers for biomass burning associated with the characterization of PM2.5 and component sources during dry season haze episodes in Upper South East Asia. Science of the Total Environment, 658, 708–722. https://doi.org/10.1016/j.scitotenv.2018.12.201

    Article  CAS  Google Scholar 

  • Van Der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., & Arellano, A. F. (2006). Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics, 6(11), 3423–3441. https://doi.org/10.5194/acp-6-3423-2006

    Article  Google Scholar 

  • van der Zee, S. C., Fischer, P. H., & Hoek, G. (2016). Air pollution in perspective: Health risks of air pollution expressed in equivalent numbers of passively smoked cigarettes. Environmental Research, 148, 475–483. https://doi.org/10.1016/j.envres.2016.04.001

    Article  CAS  Google Scholar 

  • Vithanage, M., Bandara, P. C., Novo, L. A. B., Kumar, A., Ambade, B., Naveendrakumar, G., et al. (2022). Deposition of trace metals associated with atmospheric particulate matter: Environmental fate and health risk assessment. Chemosphere, 303(P3), 135051. https://doi.org/10.1016/j.chemosphere.2022.135051

    Article  CAS  Google Scholar 

  • Wang, Y., Hopke, P. K., & Utell, M. J. (2011). Urban-scale spatial-temporal variability of black carbon and winter residential wood combustion particles. Aerosol and Air Quality Research, 11(5), 473–481. https://doi.org/10.4209/aaqr.2011.01.0005

    Article  CAS  Google Scholar 

  • Wang, Y., Yang, D., Li, S., Zhang, L., Zheng, G., & Guo, L. (2019). Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation. Chemical Engineering Journal, 357, 258–268.

    Article  CAS  Google Scholar 

  • Wang, Q., Li, L., Zhou, J., Ye, J., Dai, W., Liu, H., et al. (2020). Measurement report: Source and mixing state of black carbon aerosol in the North China Plain: Implications for radiative effect. Atmospheric Chemistry and Physics, 20(23), 15427–15442. https://doi.org/10.5194/acp-20-15427-2020

    Article  CAS  Google Scholar 

  • Wang, S., Zhang, H., Wang, M., Liu, X., Shang, S., Wang, Z., & Zhang, C. (2022). Micro-meso hierarchical ZSM-5 zeolite supported RuOx nanoparticles for activity enhancement of catalytic vinyl chloride oxidation. Applied Surface Science, 606, 154906.

    Article  CAS  Google Scholar 

  • Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., & Baltensperger, U. (2003). Absorption of light by soot particles: Determination of the absorption coefficient by means of aethalometers. Journal of Aerosol Science, 34(10), 1445–1463. https://doi.org/10.1016/S0021-8502(03)00359-8

    Article  CAS  Google Scholar 

  • Yin, L., Wang, L., Huang, W., Liu, S., Yang, B., & Zheng, W. (2021). Spatiotemporal analysis of haze in Beijing based on the multi-convolution model. Atmosphere, 12(11), 1408. https://doi.org/10.3390/atmos12111408

    Article  Google Scholar 

  • Yin, L., Wang, L., Huang, W., Tian, J., Liu, S., Yang, B., & Zheng, W. (2022). Haze grading using the convolutional neural networks. Atmosphere, 13(4), 522. https://doi.org/10.3390/atmos13040522

    Article  CAS  Google Scholar 

  • Zhang, Y. L., Huang, R. J., El Haddad, I., Ho, K. F., Cao, J. J., Han, Y., et al. (2015). Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013. Atmospheric chemistry and physics, 15(3), 1299–1312. https://doi.org/10.5194/acp-15-1299-2015

  • Zhuang, B. L., Chen, H. M., Li, S., Wang, T. J., Liu, J., Zhang, L. J., Zhao, M., et al. (2019). The direct efects of black carbon aerosols from different source sectors in East Asia in summer. Clim Dynamics, 53(9), 5293–5310.

    Article  Google Scholar 

  • Zotter, P., Herich, H., Gysel, M., El-Haddad, I., Zhang, Y., Mocnik, G., et al. (2017). Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol. Atmospheric Chemistry and Physics, 17(6), 4229–4249. https://doi.org/10.5194/acp-17-4229-2017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank GIOVANNI earth data analysis and the Meteorological Data Explorer (METEX) for the provided data for the provision of trajectory, developed by CGER, Japan (http://db.cger.nies.go.jp/metex/trajectory.html). The Meteorological parameters such as temperature, rainfall, and relative humidity were also taken into consideration during the study (https://www.worldweatheronline.com).

Funding

This work is KSU funded from the Researchers Supporting Project number (RSP2023R355), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Balram Ambade and Tapan Kumar Sankar did the experimental work and wrote the original draft. Dilip Kumar Mahato, Umesh Chandra Dumka, and Lokesh K. Sahu validated the results. Sneha Gautam and Alok Sagar Gautam did the editing and theoretical analysis. Balram Ambade, Sneha Gautam, and Tapan Kumar Sankar conceptualized and designed the methodology and reviewed and edited the manuscript. Faruq Mohammad, Hamad A. Al-Lohedan, and Ahmed A Soleiman have provided funds and technical support to the study.

Corresponding authors

Correspondence to Balram Ambade or Sneha Gautam.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambade, B., Sankar, T.K., Gautam, S. et al. Black Carbon vs Carbon Monoxide: Assessing the Impact on Indian Urban Cities. Water Air Soil Pollut 234, 710 (2023). https://doi.org/10.1007/s11270-023-06706-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06706-w

Keywords

Navigation