Skip to main content

Advertisement

Log in

Evaluation of Agricultural Non-point Source Pollution: a Review

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Non-point source pollution in agriculture was a global environmental concern. It is an important measure for preventing and controlling targeted agricultural non-point source (ANPS) pollution to determine the critical source areas and key factors by evaluation. This paper reviewed the evaluation indexes and methods of ANPS pollution and their selection at different scales, highlighting the evaluation indexes and their weights involved in the pollution sources, mitigation strategies, and environmental impacts of ANPS. It also explored load estimation of different scales from ANPS pollution. Estimation methods mainly include regional pollution load balance, unit pollution load, and simulation model. Field monitoring can provide an accurate estimation of ANPS pollution loads. Still, it is costly, and it requires intensive labor, leading to scarce monitoring data. Most empirical models in calculating ANPS pollution at watershed scales lacked the process of ANPS pollution entering the water body. The mechanism model was limited by available monitoring data, which was difficult to be applied on a large scale. Quantifying nutrient loads at regional or national scales was challenging, mainly due to model shortcomings and a lack of high-resolution data on agricultural management practices. Therefore, the evaluation of ANPS pollution should formulate systematic technical standards and develop the evaluation model based on information technology. Further implemented measures to prevent and control ANPS pollution should be according to local conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data will be made available on request.

References

  • Adu, J. T., & Kumarasamy, M. (2020). Development of non-point source hybrid cells in series model for reactive pollutant transport in natural rivers. Polish Journal of Environmental Studies, 29(5), 3031–3039. https://doi.org/10.15244/pjoes/109025

    Article  CAS  Google Scholar 

  • An, J., Zheng, F., Römkens, M. J. M., Li, G., Yang, Q., Wen, L., et al. (2013). The role of soil surface water regimes and raindrop impact on hillslope soil erosion and nutrient losses. Natural Hazards, 67(2), 411–430. https://doi.org/10.1007/s11069-013-0570-9

    Article  Google Scholar 

  • Aryal, N., & Reba, M. L. (2017). Transport and transformation of nutrients and sediment in two agricultural watersheds in Northeast Arkansas. Agriculture Ecosystems & Environment, 236, 30–42. https://doi.org/10.1016/j.agee.2016.11.006

    Article  CAS  Google Scholar 

  • Badrzadeh, N., Samani, J. M. V., Mazaheri, M., & Kuriqi, A. (2022). Evaluation of management practices on agricultural nonpoint source pollution discharges into the rivers under climate change effects. Science of the Total Environment, 838. https://doi.org/10.1016/j.scitotenv.2022.156643

  • Bah, H. D., Zhou, M. H., Ren, X., Hu, L., Dong, Z. X., & Zhu, B. (2020). Effects of organic amendment applications on nitrogen and phosphorus losses from sloping cropland in the upper Yangtze River. Agriculture Ecosystems & Environment, 302. https://doi.org/10.1016/j.agee.2020.107086

  • Bechmann, M., Blicher-Mathiesen, G., Kyllmar, K., Iital, A., Lagzdins, A., & Salo, T. (2014). Nitrogen application, balances and their effect on water quality in small catchments in the Nordic-Baltic countries. Agriculture Ecosystems & Environment, 198, 104–113. https://doi.org/10.1016/j.agee.2014.04.004

    Article  CAS  Google Scholar 

  • Bergstrom, L. F. (2004). Symposium 2 part 2: Food production for a growing world population - The impact of food production on soils and groundwater resources. Journal of Food Science, 69(9), R181–R184. https://doi.org/10.1111/j.1365-2621.2004.tb09943.x

    Article  Google Scholar 

  • Boardman, E., Danesh-Yazdi, M., Foufoula-Georgiou, E., Dolph, C. L., & Finlay, J. C. (2019). Fertilizer, landscape features and climate regulate phosphorus retention and river export in diverse Midwestern watersheds. Biogeochemistry, 146(3), 293–309. https://doi.org/10.1007/s10533-019-00623-z

    Article  CAS  Google Scholar 

  • Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3).

  • Carver, R. E., Nelson, N. O., Roozeboom, K. L., Kluitenberg, G. J., Tomlinson, P. J., Kang, Q., et al. (2022). Cover crop and phosphorus fertilizer management impacts on surface water quality from a no-till corn-soybean rotation. Journal of Environmental Management, 301. https://doi.org/10.1016/j.jenvman.2021.113818

  • Chahor, Y., Casali, J., Gimenez, R., Bingner, R. L., Campo, M. A., & Goni, M. (2014). Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed in Navarre (Spain). Agricultural Water Management, 134, 24–37. https://doi.org/10.1016/j.agwat.2013.11.014

    Article  Google Scholar 

  • Chang, C. L., & Li, M. Y. (2017). Predictions of diffuse pollution by the HSPF model and the back-propagation neural network model. Water Environment Research, 89(8), 732–738. https://doi.org/10.2175/106143017x14902968254665

    Article  CAS  Google Scholar 

  • Chen, L., Wang, Y. W., Yang, N., Zhu, K. H., Yan, X. M., Bai, Z. H., et al. (2023). Improving crop-livestock integration in China using numerical experiments at catchment and regional scales. Agriculture Ecosystems & Environment, 341. https://doi.org/10.1016/j.agee.2022.108192

  • Chen, L., Zhong, Y. C., Wei, G. Y., Cai, Y. P., & Shen, Z. Y. (2014). Development of an integrated modeling approach for identifying multilevel non-point-source priority management areas at the watershed scale. Water Resources Research, 50(5), 4095–4109. https://doi.org/10.1002/2013wr015041

    Article  Google Scholar 

  • Corradini, F., Najera, F., Casanova, M., Tapia, Y., Singh, R., & do Salazar, O. (2015). Effects of maize cultivation on nitrogen and phosphorus loadings to drainage channels in Central Chile. Environmental Monitoring and Assessment, 187(11). https://doi.org/10.1007/s10661-015-4919-2

  • Cui, G. N., Liu, Y. F., Wang, P. F., Bai, X. Y., Wang, H. T., Xu, Y. M., et al. (2022). Distribution characteristics and risk assessment of agricultural land use non-point source pollution in typical biofuel ethanol planting areas. International Journal of Environmental Research and Public Health, 19(3). https://doi.org/10.3390/ijerph19031394

  • De Girolamo, A. M., Calabrese, A., Pappagallo, G., Santese, G., & Lo Porto, A. (2012). Impact of anthropogenic activities on a temporary river. Fresenius Environmental Bulletin, 21(11), 3278–3286.

    Google Scholar 

  • Ding, X. W., & Liu, L. (2019). Long-term effects of anthropogenic factors on nonpoint source pollution in the upper reaches of the Yangtze River. Sustainability, 11(8). https://doi.org/10.3390/su11082246

  • Drewry, J. J., Newham, L. T. H., & Greene, R. S. B. (2011). Index models to evaluate the risk of phosphorus and nitrogen loss at catchment scales. Journal of Environmental Management, 92(3), 639–649. https://doi.org/10.1016/j.jenvman.2010.10.001

    Article  CAS  Google Scholar 

  • Fonseca, A., Boaventura, R. A. R., & Vilar, V. J. P. (2018). Integrating water quality responses to best management practices in Portugal. Environmental Science and Pollution Research, 25(2), 1587–1596. https://doi.org/10.1007/s11356-017-0610-1

    Article  CAS  Google Scholar 

  • Fu, J., Jian, Y. W., Wu, Y. L., Chen, D. J., Zhao, X., Ma, Y. H., et al. (2021). Nationwide estimates of nitrogen and phosphorus losses via runoff from rice paddies using data-constrained model simulations. Journal of Cleaner Production, 279. https://doi.org/10.1016/j.jclepro.2020.123642

  • Fucik, P., Hejduk, T., & Peterkova, J. (2015). Quantifying water pollution sources in a small tile-drained agricultural watershed. Clean: Soil, Air, Water, 43(5), 698–709. https://doi.org/10.1002/clen.201300929

    Article  CAS  Google Scholar 

  • Gburek, W. J., Sharpley, A. N., Heathwaite, L., & Folmar, G. J. (2000). Phosphorus management at the watershed scale: A modification of the phosphorus index. Journal of Environmental Quality, 29(1), 130–144. https://doi.org/10.2134/jeq2000.00472425002900010017x

    Article  CAS  Google Scholar 

  • Geng, R., & Sharpley, A. N. (2019). A novel spatial optimization model for achieve the trad-offs placement of best management practices for agricultural non-point source pollution control at multi-spatial scales. Journal of Cleaner Production, 234, 1023–1032. https://doi.org/10.1016/j.jclepro.2019.06.277

    Article  CAS  Google Scholar 

  • Giri, S., Qiu, Z. Y., Prato, T., & Luo, B. L. (2016). An integrated approach for targeting critical source areas to control nonpoint source pollution in watersheds. Water Resources Management, 30(14), 5087–5100. https://doi.org/10.1007/s11269-016-1470-z

    Article  Google Scholar 

  • Gray, C. W., McDowell, R. W., Carrick, S., & Thomas, S. (2016). The effect of irrigation and urine application on phosphorus losses to subsurface flow from a stony soil. Agriculture Ecosystems & Environment, 233, 425–431. https://doi.org/10.1016/j.agee.2016.09.040

    Article  Google Scholar 

  • Gu, Y. J., Han, C. L., Kong, M., Shi, X. Y., Zdruli, P., & Li, F. M. (2018). Plastic film mulch promotes high alfalfa production with phosphorus-saving and low risk of soil nitrogen loss. Field Crops Research, 229, 44–54. https://doi.org/10.1016/j.fcr.2018.09.011

    Article  Google Scholar 

  • Guo, W. X., Fu, Y. C., Ruan, B. Q., Ge, H. F., & Zhao, N. N. (2014). Agricultural non-point source pollution in the Yongding River Basin. Ecological Indicators, 36, 254–261. https://doi.org/10.1016/j.ecolind.2013.07.012

    Article  CAS  Google Scholar 

  • Hanrahan, B. R., King, K. W., Williams, M. R., Duncan, E. W., Pease, L. A., & LaBarge, G. A. (2019). Nutrient balances influence hydrologic losses of nitrogen and phosphorus across agricultural fields in northwestern Ohio. Nutrient Cycling in Agroecosystems, 113(3), 231–245. https://doi.org/10.1007/s10705-019-09981-4

    Article  CAS  Google Scholar 

  • Hou, X. K., Zhan, X. Y., Zhou, F., Yan, X. Y., Gu, B. J., Reis, S., et al. (2018). Detection and attribution of nitrogen runoff trend in China’s croplands. Environmental Pollution, 234, 270–278. https://doi.org/10.1016/j.envpol.2017.11.052

    Article  CAS  Google Scholar 

  • Hua, L. L., Li, W. C., Zhai, L. M., Yen, H., Lei, Q. L., Liu, H. B., et al. (2019). An innovative approach to identifying agricultural pollution sources and loads by using nutrient export coefficients in watershed modeling. Journal of Hydrology, 571, 322–331. https://doi.org/10.1016/j.jhydrol.2019.01.043

    Article  CAS  Google Scholar 

  • Huang, J. J., Lin, X. J., Wang, J. H., & Wang, H. (2015). The precipitation driven correlation based mapping method (PCM) for identifying the critical source areas of non-point source pollution. Journal of Hydrology, 524, 100–110. https://doi.org/10.1016/j.jhydrol.2015.02.011

    Article  CAS  Google Scholar 

  • Huang, Z. L., Han, L. Y., Zeng, L. X., Xiao, W. F., & Tian, Y. W. (2016). Effects of land use patterns on stream water quality: A case study of a small-scale watershed in the Three Gorges Reservoir Area, China. Environmental Science and Pollution Research, 23(4), 3943–3955. https://doi.org/10.1007/s11356-015-5874-8

    Article  CAS  Google Scholar 

  • Jarvie, H. P., Withers, P. J. A., Bowes, M. J., Palmer-Felgate, E. J., Harper, D. M., Wasiak, K., et al. (2010). Streamwater phosphorus and nitrogen across a gradient in rural-agricultural land use intensity. Agriculture Ecosystems & Environment, 135(4), 238–252. https://doi.org/10.1016/j.agee.2009.10.002

    Article  CAS  Google Scholar 

  • Ji, H., Peng, D., Fan, C., Zhao, K., Gu, Y., & Liang, Y. (2022). Assessing effects of non-point source pollution emission control schemes on Beijing’s sub-center with a water environment model. Urban Climate, 43. https://doi.org/10.1016/j.uclim.2022.101148

  • Jin, X. P., Bai, Z. H., Oenema, O., Winiwarter, W., Velthof, G., Chen, X., et al. (2020). Spatial planning needed to drastically reduce nitrogen and phosphorus surpluses in China’s agriculture. Environmental Science & Technology, 54(19), 11894-11904. https://doi.org/10.1021/acs.est.0c00781.

  • Johnes, P. J. (1996). Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: The export coefficient modelling approach. Journal of Hydrology, 183(3), 323–349. https://doi.org/10.1016/0022-1694(95)02951-6

    Article  CAS  Google Scholar 

  • Karki, R., Tagert, M. L. M., Paz, J. O., & Bingner, R. L. (2017). Application of AnnAGNPS to model an agricultural watershed in East-Central Mississippi for the evaluation of an on-farm water storage (OFWS) system. Agricultural Water Management, 192, 103–114. https://doi.org/10.1016/j.agwat.2017.07.002

    Article  Google Scholar 

  • King, K. W., Williams, M. R., LaBarge, G. A., Smith, D. R., Reutter, J. M., Duncan, E. W., et al. (2018). Addressing agricultural phosphorus loss in artificially drained landscapes with 4R nutrient management practices. Journal of Soil and Water Conservation, 73(1), 35–47. https://doi.org/10.2489/jswc.73.1.35

    Article  Google Scholar 

  • Kou, X. Y., Ding, J. J., Li, Y. Z., Li, Q. Z., Mao, L. L., Xu, C. Y., et al. (2021). Tracing nitrate sources in the groundwater of an intensive agricultural region. Agricultural Water Management, 250. https://doi.org/10.1016/j.agwat.2021.106826

  • Kraemer, B. M., Pilla, R. M., Woolway, R. I., Anneville, O., Ban, S., Colom-Montero, W., et al. (2021). Climate change drives widespread shifts in lake thermal habitat. Nature Climate Change, 11(6), 521–529. https://doi.org/10.1038/s41558-021-01060-3

    Article  Google Scholar 

  • Krupa, M., Tate, K. W., van Kessel, C., Sarwar, N., & Linquist, B. A. (2011). Water quality in rice-growing watersheds in a Mediterranean climate. Agriculture Ecosystems & Environment, 144(1), 290–301. https://doi.org/10.1016/j.agee.2011.09.004

    Article  Google Scholar 

  • Lee, M., Park, G., Park, M., Park, J., Lee, J., & Kim, S. (2010). Evaluation of non-point source pollution reduction by applying best management practices using a SWAT model and QuickBird high resolution satellite imagery. Journal of Environmental Sciences, 22(6), 826–833. https://doi.org/10.1016/s1001-0742(09)60184-4

    Article  Google Scholar 

  • Leone, A., Ripa, M. N., Boccia, L., & Lo Porto, A. (2008). Phosphorus export from agricultural land: A simple approach. Biosystems Engineering, 101(2), 270–280. https://doi.org/10.1016/j.biosystemseng.2008.07.005

    Article  Google Scholar 

  • Li, H. E. (2000). Mean concentration method for estimation of nonpoint source load and its application. Acta Scientiae Circumstantiae, 20(4), 397–400. https://doi.org/10.13671/j.hjkxxb.2000.04.003

    Article  Google Scholar 

  • Li, H. Y., Zhu, N. Y., Wang, S. C., Gao, M. N., Xia, L. Z., Kerr, P. G., et al. (2020). Dual benefits of long-termecological agricultural engineering: Mitigation of nutrient losses and improvement of soil quality. Science of the Total Environment, 721. https://doi.org/10.1016/j.scitotenv.2020.137848

  • Li, J., Tong, J., Xia, C., Hu, B. X., Zhu, H., Yang, R., et al. (2017). Numerical simulation and experimental study on farmland nitrogen loss to surface runoff in a raindrop driven process. Journal of Hydrology, 549, 754–768. https://doi.org/10.1016/j.jhydrol.2017.01.035

    Article  CAS  Google Scholar 

  • Li, J. M., Wang, W. L., Guo, M. M., Kang, H. L., Wang, Z. G., Huang, J. Q., et al. (2020). Effects of soil texture and gravel content on the infiltration and soil loss of spoil heaps under simulated rainfall. Journal of Soils and Sediments, 20(11), 3896–3908. https://doi.org/10.1007/s11368-020-02729-6

    Article  CAS  Google Scholar 

  • Li, W. C., Zhai, L. M., Lei, Q. L., Wollheim, W. M., Liu, J., Liu, H. B., et al. (2018). Influences of agricultural land use composition and distribution on nitrogen export from a subtropical watershed in China. Science of the Total Environment, 642, 21–32. https://doi.org/10.1016/j.scitotenv.2018.06.048

    Article  CAS  Google Scholar 

  • Lintern, A., Webb, J. A., Ryu, D., Liu, S., Bende-Michl, U., Waters, D., et al. (2018). Key factors influencing differences in stream water quality across space. Wiley Interdisciplinary Reviews Water, 5(1). https://doi.org/10.1002/wat2.1260

  • Liu, H., Chen, J., Zhang, L., Sun, K., & Cao, W. (2021). Simulation effects of clean water corridor technology on the control of non-point source pollution in the Paihe River basin, Chaohu lake. Environmental Science and Pollution Research International, 28(18), 23534–23546. https://doi.org/10.1007/s11356-020-12274-x

    Article  CAS  Google Scholar 

  • Liu, L., Ouyang, W., Liu, H., Zhu, J., Fan, X., Zhang, F., et al. (2021). Drainage optimization of paddy field watershed for diffuse phosphorus pollution control and sustainable agricultural development. Agriculture, Ecosystems & Environment, 308. https://doi.org/10.1016/j.agee.2020.107238

  • Liu, L. L., Dong, Y. C., Kong, M., Zhou, J., Zhao, H. B., Tang, Z., et al. (2020). Insights into the long-term pollution trends and sources contributions in Lake Taihu, China using multi-statistic analyses models. Chemosphere, 242. https://doi.org/10.1016/j.chemosphere.2019.125272

  • Liu, S., Zhou, Z., Liu, J., Wang, K., Li, J., Wang, P., et al. (2023). Simulation of water and nitrogen movement mechanism in cold regions during freeze–thaw period based on a distributed nonpoint source pollution model closely coupled water, heat, and nitrogen processes at the watershed scale. Environmental Science and Pollution Research, 30(3), 5931–5954. https://doi.org/10.1007/s11356-022-22535-6

    Article  Google Scholar 

  • Long, L., He, F., & Zhang, H. (2021). Risk assessment of non-point source pollution of land use system of mountainous watershed and spatially referenced regressions on watershed attributes simulation under geological environment assessment. Arabian Journal of Geosciences, 14(4). https://doi.org/10.1007/s12517-021-06610-9

  • Longyang, Q. Q. (2019). Assessing the effects of climate change on water quality of plateau deep-water lake - A study case of Hongfeng Lake. Science of the Total Environment, 647, 1518–1530. https://doi.org/10.1016/j.scitotenv.2018.08.031

    Article  CAS  Google Scholar 

  • Ma, B. J., Wu, C. G., Ding, F. X., & Zhou, Z. X. (2021). Predicting basin water quality using source-sink landscape distribution metrics in the Danjiangkou Reservoir of China. Ecological Indicators, 127. https://doi.org/10.1016/j.ecolind.2021.107697

  • Ma, Z. W., Luo, M., Wang, Q., Li, C., Guo, L., Wu, S., et al. (2022). Long-term agronomic practices in reducing nitrogen and phosphorus loss from intensive croplands. ACS Earth and Space Chemistry, 6(6), 1627–1639. https://doi.org/10.1021/acsearthspacechem.2c00097

    Article  CAS  Google Scholar 

  • Momm, H. G., Porter, W. S., Yasarer, L. M., ElKadiri, R., Bingner, R. L., & Aber, J. W. (2019). Crop conversion impacts on runoff and sediment loads in the Upper Sunflower River watershed. Agricultural Water Management, 217, 399–412. https://doi.org/10.1016/j.agwat.2019.03.012

    Article  Google Scholar 

  • Ni, X. J., & Parajuli, P. B. (2018). Evaluation of the impacts of BMPs and tailwater recovery system on surface and groundwater using satellite imagery and SWAT reservoir function. Agricultural Water Management, 210, 78–87. https://doi.org/10.1016/j.agwat.2018.07.027

    Article  Google Scholar 

  • Ongley, E. D. (1987). Scale effects in fluvial sediment-associated chemical data. Hydrological Processes, 1(2), 171–179. https://doi.org/10.1002/hyp.3360010205

    Article  Google Scholar 

  • Opoku-Kwanowaa, Y., Furaha, R. K., Yan, L., & Wei, D. M. (2020). Effects of planting field on groundwater and surface water pollution in China. Clean: Soil, Air, Water, 48(5-6). https://doi.org/10.1002/clen.201900452

  • Ouyang, W., Gao, X., Wei, P., Gao, B., Lin, C. Y., & Hao, F. H. (2017). A review of diffuse pollution modeling and associated implications for watershed management in China. Journal of Soils and Sediments, 17(6), 1527–1536. https://doi.org/10.1007/s11368-017-1688-2

    Article  CAS  Google Scholar 

  • Pan, F., Feng, Q. Y., McGehee, R., Engel, B. A., Flanagan, D. C., & Chen, J. Q. (2021). A framework for automated and spatially-distributed modeling with the Agricultural Policy Environmental eXtender (APEX) model. Environmental Modelling & Software, 144. https://doi.org/10.1016/j.envsoft.2021.105147

  • Peng, J. Y., Jin, C. L., Wu, Y., Hou, Z. Y., Gao, S. J., Chu, Z. S., et al. (2022). Modeling non-point source nutrient loads with different cropping systems in an agricultural lake watershed in Southwestern China: From Field to Watershed Scale. Mathematics, 10(21). https://doi.org/10.3390/math10214047

  • Phong, L. T., Stoorvogel, J. J., van Mensvoort, M. E. F., & Udo, H. M. J. (2011). Modeling the soil nutrient balance of integrated agriculture-aquaculture systems in the Mekong Delta, Vietnam. Nutrient Cycling in Agroecosystems, 90(1), 33–49. https://doi.org/10.1007/s10705-010-9410-4

    Article  CAS  Google Scholar 

  • Qiu, W. W., Zhong, Z. B., & Li, Z. L. (2021). Agricultural non-point source pollution in China: Evaluation, convergence characteristics and spatial effects. Chinese Geographical Science, 31(3), 571–584. https://doi.org/10.1007/s11769-021-1200-1

    Article  Google Scholar 

  • Robb, G. A., Novotny, V., & Olem, H. (1996). Water quality: Prevention, identification and management of diffuse pollution. Geographical Journal, 162, 109–109. https://doi.org/10.2307/3060267

    Article  Google Scholar 

  • Sabzevari, T., & Talebi, A. (2019). Effect of hillslope topography on soil erosion and sediment yield using USLE model. Acta Geophysica, 67(6), 1587–1597. https://doi.org/10.1007/s11600-019-00361-8

    Article  Google Scholar 

  • Sachdeva, V., Hussain, N., Husk, B. R., & Whalen, J. K. (2019). Biochar-induced soil stability influences phosphorus retention in a temperate agricultural soil. Geoderma, 351, 71–75. https://doi.org/10.1016/j.geoderma.2019.05.029

    Article  CAS  Google Scholar 

  • Shen, Z. Y., Chen, L., Hong, Q., Xie, H., Qiu, J. L., & Liu, R. M. (2013). Vertical variation of nonpoint source pollutants in the Three Gorges Reservoir Region. PLoS One, 8(8). https://doi.org/10.1371/journal.pone.0071194

  • Shen, Z. Y., Qiu, J. L., Hong, Q., & Chen, L. (2014). Simulation of spatial and temporal distributions of non-point source pollution load in the Three Gorges Reservoir Region. Science of the Total Environment, 493, 138–146. https://doi.org/10.1016/j.scitotenv.2014.05.109

    Article  CAS  Google Scholar 

  • Shrestha, N. K., Rudra, R. P., Daggupati, P., Goel, P. K., & Shukla, R. (2021). A comparative evaluation of the continuous and event-based modelling approaches for identifying critical source areas for sediment and phosphorus losses. Journal of Environmental Management, 277. https://doi.org/10.1016/j.jenvman.2020.111427

  • Simpson, I. M., Winston, R. J., & Dorsey, J. D. (2023). Monitoring the effects of urban and forested land uses on runoff quality: Implications for improved stormwater management. Science of the Total Environment, 862. https://doi.org/10.1016/j.scitotenv.2022.160827

  • Smith, D. R., Owens, P. R., Leytem, A. B., & Warnemuende, E. A. (2007). Nutrient losses from manure and fertilizer applications as impacted by time to first runoff event. Environmental Pollution, 147(1), 131–137. https://doi.org/10.1016/j.envpol.2006.08.021

    Article  CAS  Google Scholar 

  • Srinivas, R., Singh, A. P., Dhadse, K., & Garg, C. (2020). An evidence based integrated watershed modelling system to assess the impact of non-point source pollution in the riverine ecosystem. Journal of Cleaner Production, 246. https://doi.org/10.1016/j.jclepro.2019.118963

  • Strand, J., Carson, R. T., Navrud, S., Ortiz-Bobea, A., & Vincent, J. R. (2017). Using the Delphi method to value protection of the Amazon rainforest. Ecological Economics, 131, 475–484. https://doi.org/10.1016/j.ecolecon.2016.09.028

    Article  Google Scholar 

  • Strehmel, A., Schmalz, B., & Fohrer, N. (2016). Evaluation of land use, land management and soil conservation strategies to reduce non-point source pollution loads in the Three Gorges Region, China. Environmental Management, 58(5), 906–921. https://doi.org/10.1007/s00267-016-0758-3

    Article  Google Scholar 

  • Sun, S. Y., Zhang, J. F., Cai, C. J., Cai, Z. Y., Li, X. G., & Wang, R. J. (2020). Coupling of non-point source pollution and soil characteristics covered by Phyllostachys edulis stands in hilly water source area. Journal of Environmental Management, 268. https://doi.org/10.1016/j.jenvman.2020.110657

  • Sun, X. L., Hu, Z. Y., Li, M., Liu, L., Xie, Z. J., Li, S. Y., et al. (2019). Optimization of pollutant reduction system for controlling agricultural non-point-source pollution based on grey relational analysis combined with analytic hierarchy process. Journal of Environmental Management, 243, 370–380. https://doi.org/10.1016/j.jenvman.2019.04.089

    Article  CAS  Google Scholar 

  • Tong, S. T. Y., & Naramngam, S. (2007). Modeling the impacts of farming practices on water quality in the little Miami River Basin. Environmental Management, 39(6), 853–866. https://doi.org/10.1007/s00267-006-0307-6

    Article  Google Scholar 

  • Varekar, V., Yadav, V., & Karmakar, S. (2021). Rationalization of water quality monitoring locations under spatiotemporal heterogeneity of diffuse pollution using seasonal export coefficient. Journal of Environmental Management, 277, 111342. https://doi.org/10.1016/j.jenvman.2020.111342

    Article  CAS  Google Scholar 

  • Venishetty, V., & Parajuli, P. B. (2022). Assessment of BMPs by estimating hydrologic and water quality outputs using SWAT in Yazoo River watershed. Agriculture-Basel, 12(4). https://doi.org/10.3390/agriculture12040477

  • Wallace, C. W., Flanagan, D. C., & Engel, B. A. (2017). Quantifying the effects of conservation practice implementation on predicted runoff and chemical losses under climate change. Agricultural Water Management, 186, 51–65. https://doi.org/10.1016/j.agwat.2017.02.014

    Article  Google Scholar 

  • Wan, W., Han, Y., Wu, H., Liu, F., & Liu, Z. (2021). Application of the source–sink landscape method in the evaluation of agricultural non-point source pollution: First estimation of an orchard-dominated area in China. Agricultural Water Management, 252. https://doi.org/10.1016/j.agwat.2021.106910

  • Wang, F. E., Wang, Y. X., Zhang, K., Hu, M., Weng, Q., & Zhang, H. C. (2021). Spatial heterogeneity modeling of water quality based on random forest regression and model interpretation. Environmental Research, 202. https://doi.org/10.1016/j.envres.2021.111660

  • Wang, H., He, P., Shen, C., & Wu, Z. (2019). Effect of irrigation amount and fertilization on agriculture non-point source pollution in the paddy field. Environmental Science and Pollution Research International, 26(10), 10363–10373. https://doi.org/10.1007/s11356-019-04375-z

    Article  Google Scholar 

  • Wang, J. L., Lu, J. Z., Zhang, Z., Han, X. X., Zhang, C., & Chen, X. L. (2022). Agricultural non-point sources and their effects on chlorophyll-a in a eutrophic lake over three decades (1985-2020). Environmental Science and Pollution Research, 29(31), 46634–46648. https://doi.org/10.1007/s11356-022-19220-z

    Article  CAS  Google Scholar 

  • Wang, K., Wang, P. X., Zhang, R. D., & Lin, Z. B. (2020). Determination of spatiotemporal characteristics of agricultural non-point source pollution of river basins using the dynamic time warping distance. Journal of Hydrology, 583. https://doi.org/10.1016/j.jhydrol.2019.124303

  • Wang, L., Zhao, X., Gao, J. X., Butterly, C. R., Chen, Q. H., Liu, M. Q., et al. (2019). Effects of fertilizer types on nitrogen and phosphorous loss from rice-wheat rotation system in the Taihu Lake region of China. Agriculture Ecosystems & Environment, 285. https://doi.org/10.1016/j.agee.2019.106605

  • Wang, M. H., Fu, Y. X., Wang, Y., Li, Y., Shen, J. L., Liu, X. L., et al. (2021). Pathways and mechanisms by which biochar application reduces nitrogen and phosphorus runoff losses from a rice agroecosystem. Science of the Total Environment, 797. https://doi.org/10.1016/j.scitotenv.2021.149193

  • Wang, S. H., Wang, Y. Q., Wang, Y. J., & Wang, Z. (2022). Assessment of influencing factors on non-point source pollution critical source areas in an agricultural watershed. Ecological Indicators, 141. https://doi.org/10.1016/j.ecolind.2022.109084

  • Wang, S. P., Guo, S. F., Zhai, L. M., Hua, L. L., Khoshnevisan, B., Wang, H. Y., et al. (2022). Comprehensive effects of integrated management on reducing nitrogen and phosphorus loss under legume-rice rotations. Journal of Cleaner Production, 361. https://doi.org/10.1016/j.jclepro.2022.132031

  • Wang, Y., Li, Y., Liu, F., Li, Y. Y., Song, L. F., Li, H., et al. (2014). Linking rice agriculture to nutrient chemical composition, concentration and mass flux in catchment streams in subtropical central China. Agriculture Ecosystems & Environment, 184, 9–20. https://doi.org/10.1016/j.agee.2013.11.007

    Article  CAS  Google Scholar 

  • Wang, Y. D., Liang, J. P., Yang, J., Ma, X. X., Li, X. Q., Wu, J., et al. (2019). Analysis of the environmental behavior of farmers for non-point source pollution control and management: An integration of the theory of planned behavior and the protection motivation theory. Journal of Environmental Management, 237, 15–23. https://doi.org/10.1016/j.jenvman.2019.02.070

    Article  Google Scholar 

  • Wang, Z. W., Yang, S. T., Zhao, C. S., Bai, J., Lou, H. Z., Chen, K., et al. (2016). Assessment of non-point source total phosphorus pollution from different land use and soil types in a mid-high latitude region of China. Water, 8(11). https://doi.org/10.3390/w8110505

  • Williams, M. R., King, K. W., Duncan, E. W., Pease, L. A., & Penn, C. J. (2018). Fertilizer placement and tillage effects on phosphorus concentration in leachate from fine-textured soils. Soil & Tillage Research, 178, 130–138. https://doi.org/10.1016/j.still.2017.12.010

    Article  Google Scholar 

  • Wu, L., Long, T.-Y., Liu, X., & Guo, J.-S. (2012). Impacts of climate and land-use changes on the migration of non-point source nitrogen and phosphorus during rainfall-runoff in the Jialing River watershed, China. Journal of Hydrology, 475, 26–41. https://doi.org/10.1016/j.jhydrol.2012.08.022

    Article  CAS  Google Scholar 

  • Wu, Y., Huang, W., Zhou, F., Fu, J., Wang, S., Cui, X., et al. (2020). Raindrop-induced ejection at soil-water interface contributes substantially to nutrient runoff losses from rice paddies. Agriculture, Ecosystems & Environment, 304, 107135. https://doi.org/10.1016/j.agee.2020.107135

    Article  CAS  Google Scholar 

  • Xie, H., Dong, J. W., Shen, Z. Y., Chen, L., Lai, X. J., Qiu, J. L., et al. (2019). Intra- and inter-event characteristics and controlling factors of agricultural nonpoint source pollution under different types of rainfall-runoff events. Catena, 182. https://doi.org/10.1016/j.catena.2019.104105

  • Xiong, Y. J., Peng, S. Z., Luo, Y. F., Xu, J. Z., & Yang, S. H. (2015). A paddy eco-ditch and wetland system to reduce non-point source pollution from rice-based production system while maintaining water use efficiency. Environmental Science and Pollution Research, 22(6), 4406–4417. https://doi.org/10.1007/s11356-014-3697-7

    Article  CAS  Google Scholar 

  • Xu, W., Cai, Y. P., Rong, Q. Q., Yang, Z. F., Li, C. H., & Wang, X. (2018). Agricultural non-point source pollution management in a reservoir watershed based on ecological network analysis of soil nitrogen cycling. Environmental Science and Pollution Research, 25(9), 9071–9084. https://doi.org/10.1007/s11356-017-1092-x

    Article  CAS  Google Scholar 

  • Xue, L. H., Hou, P. F., Zhang, Z. Y., Shen, M. X., Liu, F. X., & Yang, L. Z. (2020). Application of systematic strategy for agricultural non-point source pollution control in Yangtze River basin, China. Agriculture Ecosystems & Environment, 304. https://doi.org/10.1016/j.agee.2020.107148

  • Yan, B. J., Shi, W. J., Yan, J. J., & Chun, K. P. (2017). Spatial distribution of livestock and poultry farm based on livestock manure nitrogen load on farmland and suitability evaluation. Computers and Electronics in Agriculture, 139, 180–186. https://doi.org/10.1016/j.compag.2017.05.013

    Article  Google Scholar 

  • Yan, L., Xue, L. H., Petropoulos, E., Qian, C., Hou, P. F., Xu, D. F., et al. (2021). Nutrient loss by runoff from rice-wheat rotation during the wheat season is dictated by rainfall duration. Environmental Pollution, 285. https://doi.org/10.1016/j.envpol.2021.117382

  • Yang, S. H., Xu, J. Z., Zhang, J. G., Wang, Y. J., & Peng, S. Z. (2016). Reduction of non-point source pollution from paddy fields through controlled drainage in an aquatic vegetable wetland-ecological ditch system. Irrigation and Drainage, 65(5), 734–740. https://doi.org/10.1002/ird.2058

    Article  Google Scholar 

  • Zhang, Q., Yu, R., Jin, Y., Zhang, Z., Liu, X., Xue, H., et al. (2019). Temporal and spatial variation trends in water quality based on the WPI index in the shallow lake of an arid area: A case study of Lake Ulansuhai, China. Water, 11(7). https://doi.org/10.3390/w11071410

  • Zhang, Q. Z., Dijkstra, F. A., Liu, X. R., Wang, Y. D., Huang, J., & Lu, N. (2014). Effects of biochar on soil microbial biomass after four years of consecutive application in the North China Plain. PLoS One, 9(7). https://doi.org/10.1371/journal.pone.0102062

  • Zhang, S., Hou, X., Wu, C., & Zhang, C. (2020). Impacts of climate and planting structure changes on watershed runoff and nitrogen and phosphorus loss. Science of the Total Environment, 706, 134489. https://doi.org/10.1016/j.scitotenv.2019.134489

    Article  CAS  Google Scholar 

  • Zhang, X., Zhou, L., & Liu, Y. Q. (2018). Modeling land use changes and their impacts on non-point source pollution in a Southeast China coastal watershed. International Journal of Environmental Research and Public Health, 15(8). https://doi.org/10.3390/ijerph15081593

  • Zhao, X., Zhou, Y., Min, J., Wang, S. Q., Shi, W. M., & Xing, G. X. (2012). Nitrogen runoff dominates water nitrogen pollution from rice-wheat rotation in the Taihu Lake region of China. Agriculture Ecosystems & Environment, 156, 1–11. https://doi.org/10.1016/j.agee.2012.04.024

    Article  CAS  Google Scholar 

  • Zhao, Z. Q., Bai, Z. H., Wei, S., Ma, W. Q., Wang, M. R., Kroeze, C., et al. (2017). Modeling farm nutrient flows in the North China Plain to reduce nutrient losses. Nutrient Cycling in Agroecosystems, 108(2), 231–244. https://doi.org/10.1007/s10705-017-9856-8

    Article  Google Scholar 

  • Zhu, K. W., Chen, Y. C., Zhang, S., Yang, Z. M., Huang, L., Lei, B., et al. (2021). Risk prevention and control for agricultural non-point source pollution based on the process of pressure-transformation-absorption in Chongqing, China. Chinese Geographical Science, 31(4), 735–750. https://doi.org/10.1007/s11769-021-1221-9

    Article  Google Scholar 

  • Zhu, K. W., Yang, Z. M., Huang, L., Chen, Y. C., Zhang, S., Xiong, H. L., et al. (2021). Coupling ITO3dE model and GIS for spatiotemporal evolution analysis of agricultural non-point source pollution risks in Chongqing in China. Scientific Reports, 11(1), 4635. https://doi.org/10.1038/s41598-021-84075-2

    Article  CAS  Google Scholar 

  • Zong, M., Hu, Y. M., Liu, M., Li, C. L., Wang, C., & Liu, J. X. (2021). Quantifying the contribution of agricultural and urban non-point source pollutant loads in watershed with urban agglomeration. Water, 13(10). https://doi.org/10.3390/w13101385

  • Zou, L., Liu, Y., Wang, Y., & Hu, X. (2020). Assessment and analysis of agricultural non-point source pollution loads in China: 1978–2017. Journal of Environmental Management, 263. https://doi.org/10.1016/j.jenvman.2020.110400

Download references

Funding

This research was funded by the monitoring and evaluation project of national farmland N and P losses by Department of Science, Technology and Education of Ministry of Agriculture and Rural Affairs, China (No. 13210091). This was also funded by modern agricultural remote sensing monitoring system construction and industrial application of Science and Technology Major Project in Anhui Province, China (No. 202003a06020002).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and writing—original draft, M.L.; methodology and formal analysis, X.L.; investigation, writing—review and editing, N.L., Y.L. and S.W.; supervision and guidance, F.H.; conceptualization, reviewing, and editing, Y.M.

Corresponding authors

Correspondence to Fengxiang X. Han or Youhua Ma.

Ethics declarations

Informed Consent

Not applicable

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Liu, X., Legesse, N. et al. Evaluation of Agricultural Non-point Source Pollution: a Review. Water Air Soil Pollut 234, 657 (2023). https://doi.org/10.1007/s11270-023-06686-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06686-x

Keywords

Navigation