Skip to main content
Log in

How Does the Persistent Organic Pollutant Perfluorooctane Sulfonate (PFOS) Affect Health of the Common Carp?

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Perfluorooctane sulfonate (PFOS, C8F17SO3; CAS No. 2795–39-3), an industrial persistent organic pollutant, has been known with significant bioaccumulation and biomagnification potential. The purpose of this study was to demonstrate the effects of PFOS on the aquatic model vertebrate common carp (Cyprinus carpio). Fish were exposed to 1 and 10 mg/L PFOS during 96 h and 21 days. There were two control groups: control (only fish) and solvent control (DMSO and fish). After exposure times, the blood samples and tissues (gill, liver, muscle, brain, and kidney) were taken from the fish. The physiological (hematocrit) and genotoxic (micronucleus) parameters were done with the blood samples. The biochemical parameters (the advanced oxidative protein products, AOPP and glutathione, GSH) were done with the muscle, gill, brain, and liver samples. While the micronucleus and nuclear abnormalities increased, the hematocrit values decreased in the 1 mg/L PFOS-exposed groups during 96 h and 21 days. The AOPP values of the muscle, gill, brain, and liver tissues significantly changed in PFOS-exposed groups at both exposure times (P < 0.05). Unlike AOPP, glutathione levels of gill did not change in both PFOS-exposed groups at 96 h (P > 0.05). Histopathological changes were seen in the gill, liver, and kidney tissues after exposure to PFOS. Therefore, even low concentrations of PFOS have genotoxic, biochemical, and histopathological effects on carp. The results help to understand the early toxicological effects of PFOS in freshwater ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The research has no associate data.

References

  • 3M Company. (2000). Sulfonated perfluorochemicals in the environment: Sources, dispersion, fate and effects. St. Paul MN. Available at https://fluoridealert.org/wp-content/pesticides/pfos.fr.final.docket.0005.pdf. Accessed 20 May 2022

  • Al-Bairuty, G., Shaw, B. J., Handy, R. D., & Henry, T. (2013). Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 126, 104–115.

    Article  CAS  Google Scholar 

  • Ankley, G. T., Kuehl, D. W., Kahl, M. D., Jensen, K. M., Linnum, A., Leino, R. L., & Villeneuve, D. A. (2005). Reproductive and developmental toxicity and bioconcentration of perfluorooctanesulfonate in a partial life-cycle test with the fathead minnow (Pimephales promelas). Environment Toxicology and Chemistry, 24(9), 2316–2324. https://doi.org/10.1897/04-634R.1

    Article  CAS  Google Scholar 

  • Bangma, J., Eaves, L. A., Oldenburg, K., Reiner, J. L., Manuck, T., & Fry, R. C. (2020). Identifying risk factors for levels of per- and polyfluoroalkyl substances (PFAS) in the placenta in a high-risk pregnancy cohort in North Carolina. Environmental Science & Technology, 54(13), 8158–8166. https://doi.org/10.1021/acs.est.9b07102

    Article  CAS  Google Scholar 

  • Belek, N., Erkmen, B., Sepici Dinçel, A., & Gunal, A. C. (2022). Does persistent organic pollutant PFOS (perfluorooctane sulfonate) negative impacts on the aquatic invertebrate organism, Astacus leptodactylus [Eschscholtz, 1823]. Ecotoxicology, 31, 1217–1230. https://doi.org/10.1007/s10646-022-02579-7

    Article  CAS  Google Scholar 

  • Ben Amara, I., Ben Saad, H., Hamdaoui, L., et al. (2015). Maneb disturbs expression of superoxide dismutase and glutathione peroxidase, increases reactive oxygen species production, and induces genotoxicity in liver of adult mice. Environmental Science and Pollution Research, 22, 12309–12322. https://doi.org/10.1007/s11356-015-4434-6

    Article  CAS  Google Scholar 

  • Benli, A. C. K., Köksal, B., & Özkul, A. (2008). Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere, 72(9), 1355–1358. https://doi.org/10.1016/j.chemosphere.2008.04.037

    Article  CAS  Google Scholar 

  • Benli, A. C. K., Erkmen, B., & Erkoc, F. (2016). Genotoxicity of sub-lethal di-n-butyl phthalate (DBP) in Nile tilapia (Oreochromis niloticus). Archives of Industrial Hygiene and Toxicology, 67(1), 25–30.

    Article  CAS  Google Scholar 

  • Billah, M. B., Paul, S., Sultana, S., Hasan, M. J., & Salam, M. A. (2016). Effects of perfluorooctane sulfonate on the hematology and histopathology of juvenile tilapia, Oreochromis niloticus. Jahangirnagar University Journal of Biological Sciences, 4(2), 37–45. https://doi.org/10.3329/jujbs.v4i2.27794

    Article  Google Scholar 

  • Boudreau, T. M., Sibley, P. K., Mabury, S. A., Muir, D. G. C., & Solomon, K. R. (2003). Laboratory evaluation of the toxicity of perfluorooctane sulfonate (PFOS) on Selenastrum capricornutum, Chlorella vulgaris, Lemna gibba, Daphnia magna, and Daphnia pulicaria. Archives of Environmental Contamination and Toxicology, 44, 0307–0313.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  Google Scholar 

  • Çavaş, T., & Ergene-Gözükara, S. (2005). Micronucleus test in fish cells: A bioassay for in situ monitoring of genotoxic pollution in the marine environment. Environmental and Molecular Mutagenesis, 46(1), 64–70.

    Article  Google Scholar 

  • Cavaş, T., & Könen, S. (2008). In vivo genotoxicity testing of the amnesic shellfish poison (domoic acid) in piscine erythrocytes using the micronucleus test and the comet assay. Aquatic Toxicology, 90(2), 154–159. https://doi.org/10.1016/j.aquatox.2008.08.011

    Article  CAS  Google Scholar 

  • Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70–77. https://doi.org/10.1016/0003-9861(59)90090-6

    Article  CAS  Google Scholar 

  • Erkmen, B., Günal, A. C., Polat, H., Erdoğan, K., Civelek, H., & Erkoç, F. (2022). Sublethal effects of acrylamide on thyroid hormones, complete blood count and micronucleus frequency of vertebrate model organism (Cyprinus carpio). Turkish Journal of Biochemistry, 47(6), 811–818.

    Article  CAS  Google Scholar 

  • Fagbayigbo, B. O., Opeolu, B. O., & Fatoki, O. S. (2020). Adsorption of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from water using leaf biomass (Vitis vinifera) in a fixed-bed column study. Journal of Environmental Health Science and Engineering, 18, 221–233. https://doi.org/10.1007/s40201-020-00456-1

    Article  CAS  Google Scholar 

  • Fair, P. A., Peden-Adams, M. M., Mollenhauer, M. A., Bossart, G. D., Keil, D. E., & White, N. D. (2021). Effects of an environmentally relevant PCB-mixture on immune function, clinical chemistry, and thyroid hormone levels in adult female B6C3F1 mice. Journal of Toxicology Environmental Health Part A, 84(7), 279–297.

    Article  CAS  Google Scholar 

  • Fang, C., Huang, Q., Ye, T., Chen, Y., Liu, L., Kang, M., Lin, Y., Shen, H., & Dong, S. (2013). Embryonic exposure to PFOS induces immunosuppression in the fish larvae of marine medaka. Ecotoxicology and Environmental Safety, 92, 104–111. https://doi.org/10.1016/j.ecoenv.2013.03.005

    Article  CAS  Google Scholar 

  • Giesy, J. P., & Kannan, K. (2001). Global distribution of perfluorooctane sulfonate in wildlife. Environmental Science & Technology, 35(7), 339–1342. https://doi.org/10.1021/es001834k

    Article  CAS  Google Scholar 

  • Gopal, R., Narmada, S., Vijayakumar, R., & Jaleel, C. A. (2009). Chelating efficacy of CaNa2 EDTA on nickel-induced toxicity in Cirrhinus mrigala (Ham.) through its effects on glutathione peroxidase, reduced glutathione and lipid peroxidation. Comptes Rendus Biology, 332(8), 685–696.

    Article  CAS  Google Scholar 

  • Gül, A., Benli, Ç. K., Ayhan, A., Memmi, B. K., Selvi, M., Sepici-Dinçel, A., Çakiroğullari, G., & Erkoç, F. (2012). Sublethal propoxur toxicity tojuvenile common carp (Cyprinus carpio L., 1758): Biochemical, hematological, histopathological, and genotoxicity effects. Environment Chemistry and Toxicology, 31(9), 2085–2092.

    Article  Google Scholar 

  • Günal, A. Ç., Erkmen, B., Paçal, E., Arslan, P., Yıldırım, Z., & Erkoç, F. (2020). Sub-lethal effects of imidacloprid on Nile tilapia (Oreochromis niloticus). Water Air & Soil Pollution, 231, 4. https://doi.org/10.1007/s11270-019-4366-8

    Article  CAS  Google Scholar 

  • Hagenaars, A., Knapen, D., Meyer, I. J., Van der Ven, K., Hoff, P., & De Coen, W. (2008). Toxicity evaluation of perfluorooctane sulfonate (PFOS) in the liver of common carp (Cyprinus carpio). Aquatic Toxicology, 88(3), 155–163.

    Article  CAS  Google Scholar 

  • Han, J., & Fang, Z. (2010). Estrogenic effects, reproductive impairment and developmental toxicity in ovoviparous swordtail fish (Xiphophorus helleri) exposed to perfluorooctane sulfonate (PFOS). Aquatic Toxicology, 99(2), 281–290.

    Article  CAS  Google Scholar 

  • Hermenean, A., Damache, G., Albu, P., Ardelean, A., Ardelean, G., Ardelean, D. P., Horge, M., Nagy, T., Braun, M., Zsuga, M., et al. (2015). Histopathological alterations and oxidative stress in liver and kidney of Leuciscus cephalus following exposure to heavy metals in the Tur River, North Western Romania. Ecotoxicology and Environmental Safety, 119, 198–205.

    Article  CAS  Google Scholar 

  • Hoff, P. T., Van Campenhout, K., Van de Vijver, K., Covaci, A., Bervoets, L., Moens, L., Huyskens, G., Goemans, G., Belpaire, C., Blust, R., & De Coen, W. (2005). Perfluorooctane sulfonic acid and organohalogen pollutants in liver of three freshwater fish species in Flanders (Belgium): Relationships with biochemical and organismal effects. Environmental Pollution, 137(2), 324–333.

    Article  CAS  Google Scholar 

  • Houde, M., Martin, J. W., Letcher, R. J., Solomon, K. R., & Muir, D. C. G. (2006). Biological monitoring of polyfluoroalky substances: A review. Environmental Science & Technology, 40(11), 3463–3473. https://doi.org/10.1021/es052580b

    Article  CAS  Google Scholar 

  • Huang, H., Huang, C., Wang, L., Ye, X., Bai, C., Simonich, M. T., Tanguay, R. L., & Dong, Q. (2010). Toxicity, uptake kinetics and behavior assessment in zebrafish embryos following exposure to perfluorooctanesulphonicacid (PFOS). Aquatic Toxicology, 98, 139–147. https://doi.org/10.1016/j.aquatox.2010.02.003

    Article  CAS  Google Scholar 

  • Huang, J., Sun, L., Mennigen, J. A., Liu, Y., Liu, S., Zhang, M., Wang, Q., & Tu, W. (2020). Developmental toxicity of the novel PFOS alternative OBS in developing zebrafish: An emphasis on cilia disruption. Journal of Hazardous Materials, 409, 124491. https://doi.org/10.1016/j.jhazmat.2020.124491

    Article  CAS  Google Scholar 

  • Huset, C. A., Barlaz, M. A., Barofsky, D. F., & Field, J. A. (2011). Quantitative determination of fluorochemicals in municipal landfill leachates. Chemosphere, 82, 1380–1386. https://doi.org/10.1016/j.chemosphere.2010.11.072

    Article  CAS  Google Scholar 

  • Hussain, B., Sultana, T., Sultana, S., Masoud, M. S., Ahmed, Z., & Mahboob, S. (2018). Fish eco-genotoxicology: Comet and micronucleus assay in fish erythrocytes as in situ biomarker of freshwater pollution. Saudi Journal of Biological Sciences, 25(2), 393–398. https://doi.org/10.1016/j.sjbs.2017.11.048

    Article  CAS  Google Scholar 

  • Inoue, Y., Hashizume, N., Yoshida, T., Murakami, H., Suzuki, Y., Koga, Y., Takeshige, R., Kikushima, E., Yakata, N., & Otsuka, M. (2012). Comparison of bioconcentration and biomagnification factors for poorly water-soluble chemicals using common carp (Cyprinus carpio L.). Archives of Environmental Contamination and Toxicology, 63(2), 241–248.

    Article  CAS  Google Scholar 

  • Jantzen, C. E., Annunziato, K. M., & Cooper, K. R. (2016). Behavioral, morphometric, and gene expression effects in adult zebrafish (Danio rerio) embryonically exposed to PFOA, PFOS, and PFNA. Aquatic Toxicology, 180, 123–130. https://doi.org/10.1016/j.aquatox.2016.09.011

    Article  CAS  Google Scholar 

  • Jones, P. D., Hu, W., De Coen, W., Newsted, J. L., & Giesy, J. P. (2003). Binding of perfluorinated fatty acids to serum proteins. Environmental Toxicology and Chemistry, 22(11), 2639–2649. https://doi.org/10.1897/02-553

    Article  CAS  Google Scholar 

  • Kannan, K., Tao, L., Sinclair, E., Pastva, S. D., Jude, D. J., & Giesy, J. P. (2005). Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain. Archives of Environmental Contamination and Toxicology, 48, 559–566. https://doi.org/10.1007/s00244-004-0133-x

    Article  CAS  Google Scholar 

  • Kaur, S., Khera, K. S., & Kondal, J. K. (2018). Heavy metal induced histopathological alterations in liver, muscle and kidney of freshwater cyprinid, Labeo rohita (Hamilton). Journal of Entomology and Zoology Studies, 6, 2137–2144.

    Google Scholar 

  • Khan, M. S., Javed, M., Rehman, T., Urooj, M., & Ahmad, I. (2020). Heavy metal pollution and risk assessment by the battery of toxicity tests. Science Reports, 10, 16593.

    Article  CAS  Google Scholar 

  • Kim, W.-K., Lee, S.-K., & Jung, J. (2010). Integrated assessment of biomarker responses in common carp (Cyprinus carpio) exposed to perfluorinated organic compounds. Journal of Hazardous Materials, 180, 395–400. https://doi.org/10.1016/j.jhazmat.2010.04.044

    Article  CAS  Google Scholar 

  • Kirsch-Volders, M., Sofuni, T., Aardema, M., Albertini, S., Eastmond, D., Fenech, M., Ishidate, M., Jr., Lorge, E., Norppa, H., Surralles, J., Lorge, E., Norppa, H., Surrallés, J., von der Hude, W., & Wakata, A. (2000). Report from the in vitro micronucleus assay working group. Environmental Molecular and Mutagenetics, 35, 167–172.

    Article  CAS  Google Scholar 

  • Kissa, E. (2001). Fluorinated surfactants and repellants (2nd ed., pp. 1–21). Marcel Decker.

    Google Scholar 

  • Kumar, N., Thorat, S. T., Gite, A., & Patole, P. B. (2022). Selenium nanoparticles and omega-3 fatty acid enhanced thermal tolerance in fish against arsenic and high temperature. Comparative Biochemistry and Physiology Part C Toxicology and Pharmacolology, 261, 109447.

    Article  CAS  Google Scholar 

  • Lindstrom, A. B., Strynar, M. J., & Libelo, E. L. (2011). Polyfluorinated compounds: Past, present, and future. Environmental Science & Technology, 45, 7954–7961. https://doi.org/10.1021/es2011622

    Article  CAS  Google Scholar 

  • Liu, C., Chang, V. W., Gin, K. Y., & Nguyen, V. T. (2014). Genotoxicity of perfluorinated chemicals (PFCs) to the green mussel (Perna viridis). Science of the Total Environment, 487, 117–122.

    Article  CAS  Google Scholar 

  • Liu, Z., Lu, Y., Wang, P., Wang, T., Liu, S., Johnson, A. C., Sweetman, A. J., & Baninla, Y. (2017). Pollution pathways and release estimation of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in central and eastern China. Science of the Total Environment, 580, 1247–1256. https://doi.org/10.1016/j.scitotenv.2016.12.085

    Article  CAS  Google Scholar 

  • Mahmood, Y., Hussain, R., Ghaffar, A., Ali, F., Nawaz, S., Mehmood, K., & Khan, A. (2022). Acetochlor affects bighead carp (Aristichthys nobilis) by producing oxidative stress, lowering tissue proteins, and inducing genotoxicity. BioMed Research International, 9140060. https://doi.org/10.1155/2022/9140060

  • Mallatt, J. (1985). Fish gill structural changes induced by toxicants and other irritants: A statistical review. Canadian Journal of Fish and Aquatic Science, 42, 630–648. https://doi.org/10.1139/f85-083

    Article  CAS  Google Scholar 

  • Martin, J. W., Whittle, D. M., Muir, D. C., & Mabury, S. A. (2004). Perfluoroalkyl contaminants in a food web from Lake Ontario. Environmental Science & Technology, 38(20), 5379–5385. https://doi.org/10.1021/es049331s

    Article  CAS  Google Scholar 

  • Meng, L., Song, B., Lu, Y., Lv, K., Gao, W., Wang, Y., & Jiang, G. (2021). The occurrence of per- and polyfluoroalkyl substances (PFASs) in fluoropolymer raw materials and products made in China. Research Journal of Environmental Science, 107, 77–86. https://doi.org/10.1016/j.jes.2021.01.027

    Article  CAS  Google Scholar 

  • Moody, C. A., Hebert, G. N., Strauss, S. H., & Field, J. A. (2003). Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-raining area at Wurtsmith Air Force Base, Michigan, USA. Journal of Environment Monitoring, 5, 341–345. https://doi.org/10.1039/B212497A

    Article  CAS  Google Scholar 

  • Oliaei, F., Kriens, D., Weber, R., & Watson, A. (2013). PFOS and PFC releases and associated pollution from a PFC production plant in Minnesota (USA). Environment Science and Pollution Research, 20, 1977–1992. https://doi.org/10.1007/s11356-012-1275-4

    Article  CAS  Google Scholar 

  • Parihar, M. S., Javeri, T., Hemnani, T., Dubey, A. K., & Prakash, P. (1997). Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustes fossilis) to short-term elevated temperature. Journal of Thermal Biology, 22(2), 151–156.

    Article  CAS  Google Scholar 

  • Poulino, M. G., Souza, N. E. S., & Fernandes, M. N. (2012). Subchronic exposure to atrazine induces biochemical and histopathological changes in the gills of a neotropical freshwater fish, Prochilodus lineatus. Ecotoxicology and Environmental Safety, 80, 6–13. https://doi.org/10.1016/j.ecoenv.2012.02.001

    Article  CAS  Google Scholar 

  • Rahman, M. F., Peldszus, S., & Anderson, W. B. (2014). Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review. Water Resource, 50, 318–340. https://doi.org/10.1016/j.watres.2013.10.045

    Article  CAS  Google Scholar 

  • Roberts, R. J. (2001). Fish Pathology (3rd ed., p. 492). London: Saunders.

    Google Scholar 

  • Schultz, M. M., Barofsky, D. F., & Field, J. A. (2004). Quantitative determination of fluorotelomer sulfonates in groundwater by LC MS/MS. Environmental Science and Technology, 38, 1828–1835. https://doi.org/10.1021/es035031j

    Article  CAS  Google Scholar 

  • Schumann, S., Negrato, E., Edoardo, P., Bonato, M., Irato, P., Marion, A., Santovito, G., & Bertotto, D. (2022). Species-specific physiological responses in freshwater fish exposed to anthropogenic perfluorochemical (PFAS) pollution. Available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4257912. Accessed 15 Mar 2023

  • Selvi, M., Cavaş, T., Benli Karasu Caglan, A., Koçak Memmi, B., Cinkılıç, N., Dinçel, A. S., Vatan, O., Yılmaz, D., Sarıkaya, R., Zorlu, T., & Erkoç, F. (2013). Sublethal toxicity of esbiothrin relationship with total antioxidant status and in vivo genotoxicity assessment in fish (Cyprinus carpio L., 1758) using the micronucleus test and comet assay. Environmental Toxicology, 28(11), 644–51. https://doi.org/10.1002/tox.20760

    Article  CAS  Google Scholar 

  • Sepici-Dinçel, A., Benli, A. Ç. K., Selvi, M., Sarıkaya, R., Şahin, D., Özkul, I. A., & Erkoç, F. (2009). Sublethal cyfluthrin toxicity to carp (Cyprinus carpio L.) fingerlings: Biochemical, hematological, histopathological alterations. Ecotoxicology and Environmental Safety, 72(5), 1433–1439.

    Article  Google Scholar 

  • Shahid, S., Sultana, T., Sultana, S., Hussain, B., Al-Ghanim, K. A., Al-Bashir, F., Riaz, M. N., & Mahboob, S. (2022). Detecting aquatic pollution using histological investigations of the gills, liver, kidney, and muscles of Oreochromis niloticus. Toxics, 10, 564. https://doi.org/10.3390/toxics10100564

    Article  CAS  Google Scholar 

  • Shi, X., Liu, C., Wu, G., & Zhou, B. (2009). Waterborne exposure to PFOS causes disruption of the hypothalamus–pituitary–thyroid axis in zebrafish larvae. Chemosphere, 77, 1010–1018. https://doi.org/10.1016/j.chemosphere.2009.07.074

    Article  CAS  Google Scholar 

  • Srikanth, K., Pereira, E., Duarte, A. C., & Ahmad, I. (2013). Glutathione and its dependent enzymes’ modulatory responses to toxic metals and metalloids in fish—A review. Environmental Science and Pollution Research, 20(4), 2133–2149.

    Article  CAS  Google Scholar 

  • Strzyzewska, E., Szarek, J., & Babinska, I. (2016). Morphologic evaluation of the gills as a tool in the diagnostics of pathological conditions in fish and pollution in the aquatic environment: A review. Veterinarni Medicina, 61(3), 123–132. https://doi.org/10.17221/8763-VETMED

    Article  Google Scholar 

  • Touaylia, S., Khazri, A., Mezni, A., & Bejaoui, M. (2019). Effects of emerging persistent organic pollutant perfluorooctane sulfonate (PFOS) on the Crustacean Gammarus insensibilis. Human and Ecological Risk Assessment, 25, 1–9. https://doi.org/10.1080/10807039.2018.1489717

    Article  CAS  Google Scholar 

  • Tse, W. K. F., Li, J. W., Tse, A. C. K., Chan, T. F., Ho, J. C. H., Wu, R. S. S., Wong, C. K. C., & Lai, K. P. (2016). Fatty liver disease induced by perfluorooctane sulfonate: Novel insight from transcriptome analysis. Chemosphere, 159, 166–177. https://doi.org/10.1016/j.chemosphere.2016.05.060

    Article  CAS  Google Scholar 

  • UNEP. (2006). In: Draft risk profile: Perflorooctane sulfonate (PFOS). Programme U.N.E.

    Google Scholar 

  • UNEP (2009). The conference of the parties 4 of the Stockholm Convention (COP-4) in Geneva placed perfluorooctane sulfonate and perfluorooctane sulfonyl fluoride (PFOS and PFOSF) in Annex B. Available at http://chm.pops.int/Convention/Pressrelease/COP4Geneva9May2009/tabid/542/language/en-US/Default.aspx. Accessed 17 Mar 2023

  • Wilkinson, J. L., Hooda, P. S., Swinden, J., Barker, J., & Barton, S. (2018). Spatial (bio)accumulation of pharmaceuticals, illicit drugs, plasticisers, perfluorinated compounds and metabolites in river sediment, aquatic plants and benthic organisms. Environment Pollution, 234, 864–875. https://doi.org/10.1016/j.envpol.2017.11.090

    Article  CAS  Google Scholar 

  • Witko-Sarsat, V., Friedlander, M., Capeillère-Blandin, C., Nguyen-Khoa, T., Nguyen, A. T., Zingraff, J., Jungers, P., & Descamps-Latscha, B. (1996). Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Internation, 49(5), 1304–1313. https://doi.org/10.1038/ki.1996.186

    Article  CAS  Google Scholar 

  • Xia, J. G., Nie, L. J., Mi, X. M., Wang, W. Z., Ma, Y. J., Cao, Z. D., & Fu, S. J. (2015). Behavior, metabolism and swimming physiology in juvenile Spinibarbus sinensis exposed to PFOS under different temperatures. Fish Physiology and Biochemistry, 41, 1293–1304.

    Article  CAS  Google Scholar 

  • Xiao, F. (2000). Emerging poly-and perfluoroalkyl substances in the aquatic environment: A review of current literatüre. Water Resource, 124, 482–495. https://doi.org/10.1016/j.watres.2017.07.024

    Article  CAS  Google Scholar 

  • Yancheva, V. S., Stoyanova, S. G., Georgieva, E. S., & Velcheva, I. G. (2018). Mussels in ecotoxicological studies - Are they better indicators for water pollution than fish? Ecologica Balcanica, 10(1), 57–84.

    Google Scholar 

  • Zhou, Y., Zhang, Y., Wei, S., Li, W., Li, W., Wu, Z., Jiang, S., Lu, Y., Xu, Q., & Chen, L. (2022). Reduced hypoxia tolerance and altered gill morphology at elevated temperatures may limit the survival of tilapia (Oreochromis niloticus) under global warming. Fishes, 7, 216. https://doi.org/10.3390/fishes7050216

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gazi University Academic Writing Application and Research Center for proofreading the article (Certificate number: 03.03.2023/0035).

Author information

Authors and Affiliations

Authors

Contributions

PA and ACG conceptualization; PA, GG, and ACG methodology; ACG supervision; PA and ACG writing—review and editing.

Corresponding author

Correspondence to Pınar Arslan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, P., Gül, G. & Günal, A.Ç. How Does the Persistent Organic Pollutant Perfluorooctane Sulfonate (PFOS) Affect Health of the Common Carp?. Water Air Soil Pollut 234, 634 (2023). https://doi.org/10.1007/s11270-023-06651-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06651-8

Keywords

Navigation