Skip to main content
Log in

Evaluation of Physiological Stress of Grass Carp Chronically Exposed to Enrofloxacin Based on IBR Index

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Enrofloxacin (ENR) is a commonly used drug in aquaculture, and it is frequently detected in the aquatic environment. Data on ENR toxicity toward aquatic species are limited. This study was aimed at using different biomarkers to evaluate the possible toxic effects of grass carp (Ctenopharyngodon idella) exposed to 0 (control), 1, 100, and 10,000 μg/L enrofloxacin for 21 days as a sub-chronic exposure trial, oxidative stress biomarkers (including superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), and malondialdehyde (MDA)), neurotoxicity indicators (including acetylcholinesterase (ACHE) activity, nitric oxide (NO)), and digestive enzyme activities (including lipase (LPS), amylase (AMS) enzymes). In addition, an integrated biomarker response (IBR) index was utilized to evaluate the integrated toxic effects of ENR on grass carp. Our results demonstrated that ENR exposure significantly increased activities of CAT, LPS, and AMS. ENR exposure also significantly upregulated the expression levels of sod1, ACHE, LPL, ATGL, and AMY genes. Furthermore, histopathological changes were observed in the hepatopancreatic tissues of grass carp exposed to ENR. It was observed that higher IBR scores were noticed in the tissues of fish exposed to ENR, suggesting an induced biological response. The comprehensive biomarker index showed that CAT and ACHE activities have a higher response to ENR, and 100 μg/L has a greater impact on grass carp. These results indicate that ENR has a toxic effect on grass carp and impairs their physiological functions. This is the first study to explore the effects of ENR on grass carp, and it provides basic information for assessment of ENR effects in aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data and materials that support the findings of this study are available from the corresponding authors upon reasonable request.

Code Availability

Not applicable.

References

  • Adeyemi, J. A., Olise, C. C., Bamidele, O. S., & Akinola, B. K. (2020). Effects of ultraviolet photooxidation of cypermethrin on the activities of phosphatases and digestive enzymes, and intestinal histopathology in African catfish, Clarias gariepinus (Burchell, 1822). Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 333, 543–549. https://doi.org/10.1002/jez.2392

    Article  CAS  Google Scholar 

  • Ajima, M. N. O., K. Kumar, N. Poojary, and P. K. Pandey. (2021). Oxidative stress biomarkers, biochemical responses and Na+ -K+ -ATPase activities in Nile tilapia, Oreochromis niloticus exposed to diclofenac. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 240, 108934. https://doi.org/10.1016/j.cbpc.2020.108934.

  • Andrieu, M., Rico, A., Phu, T. M., Huong, D. T. T., Phuong, N. T., & Van den Brink, P. J. (2015). Ecological risk assessment of the antibiotic enrofloxacin applied to Pangasius catfish farms in the Mekong Delta, Vietnam. Chemosphere, 119, 407–414. https://doi.org/10.1016/j.chemosphere.2014.06.062

    Article  CAS  Google Scholar 

  • Badiou, A., Meled, M., & Belzunces, L. P. (2008). Honeybee Apis mellifera acetylcholinesterase–A biomarker to detect deltamethrin exposure. Ecotoxicology and Environmental Safety, 69, 246–253. https://doi.org/10.1016/j.ecoenv.2006.11.020

    Article  CAS  Google Scholar 

  • Beliaeff, B., & Burgeot, T. (2002). Integrated biomarker response: A useful tool for ecological risk assessment. Environmental Toxicology and Chemistry, 21, 1316–1322. https://doi.org/10.1002/etc.5620210629

    Article  CAS  Google Scholar 

  • Bernet, D., Schmidt, H., Meier, W., Burkhardt-Holm, P., & Wahli, T. (1999). Histopathology in fish: Proposal for a protocol to assess aquatic pollution. Journal of Fish Diseases, 22, 25–34. https://doi.org/10.1046/j.1365-2761.1999.00134.x

    Article  Google Scholar 

  • Carreno Gutierrez, H., O’Leary, A., Freudenberg, F., Fedele, G., Wilkinson, R., Markham, E., van Eeden, F., Reif, A., & Norton, W. H. J. (2020). Nitric oxide interacts with monoamine oxidase to modulate aggression and anxiety-like behaviour. European Neuropsychopharmacology, 30, 30–43. https://doi.org/10.1016/j.euroneuro.2017.09.004

    Article  CAS  Google Scholar 

  • Chen, J., Sun, R., Pan, C., Sun, Y., Mai, B., & Li, Q. X. (2020). Antibiotics and food safety in aquaculture. Journal of Agriculture and Food Chemistry, 68, 11908–11919. https://doi.org/10.1021/acs.jafc.0c03996

    Article  CAS  Google Scholar 

  • Chen, H., Chen, W., Guo, H., Lin, H., & Zhang, Y. (2021). Pharmaceuticals and personal care products in the seawater around a typical subtropical tourist city of China and associated ecological risk. Environmental Science and Pollution Research International, 28, 22716–22728. https://doi.org/10.1007/s11356-020-12335-1

    Article  CAS  Google Scholar 

  • Cheng, J., Jiang, L., Sun, T., Tang, Y., Du, Z., Lee, L., & Zhao, Q. (2019). Occurrence, seasonal variation and risk assessment of antibiotics in the surface water of North China. Archives of Environmental Contamination and Toxicology, 77, 88–97. https://doi.org/10.1007/s00244-019-00605-0

    Article  CAS  Google Scholar 

  • Correia, A. T., Rodrigues, S., Ferreira-Martins, D., Nunes, A. C., Ribeiro, M. I., & Antunes, S. C. (2020). Multi-biomarker approach to assess the acute effects of cerium dioxide nanoparticles in gills, liver and kidney of Oncorhynchus mykiss. Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 238, 108842. https://doi.org/10.1016/j.cbpc.2020.108842

    Article  CAS  Google Scholar 

  • Dalla Bona, M., Zounkova, R., Merlanti, R., Blaha, L., & De Liguoro, M. (2015). Effects of enrofloxacin, ciprofloxacin, and trimethoprim on two generations of Daphnia magna. Ecotoxicology and Environmental Safety, 113, 152–158. https://doi.org/10.1016/j.ecoenv.2014.11.018

    Article  CAS  Google Scholar 

  • Defo, M. A., Bernatchez, L., Campbell, P. G. C., & Couture, P. (2015). Transcriptional and biochemical markers in transplanted Perca flavescens to characterize cadmium- and copper-induced oxidative stress in the field. Aquatic Toxicology, 162, 39–53. https://doi.org/10.1016/j.aquatox.2015.02.014

    Article  CAS  Google Scholar 

  • Du, J., Liu, Q., & Fu, L. (2022). Metabolic and transcriptional disruption of American shad (Alosa sapidissima) by enrofloxacin in commercial aquaculture. Environmental Science and Pollution Research International, 29, 2052–2062. https://doi.org/10.1007/s11356-021-15330-2

    Article  Google Scholar 

  • Fry, J. P., Love, D. C., MacDonald, G. K., West, P. C., Engstrom, P. M., Nachman, K. E., & Lawrence, R. S. (2016). Environmental health impacts of feeding crops to farmed fish. Environment International, 91, 201–214. https://doi.org/10.1016/j.envint.2016.02.022

    Article  Google Scholar 

  • Grott, S. C., D. Bitschinski, N. G. Israel, G. Abel, S. P. da Silva, T. C. Alves, D. Lima, A. C. D. Bainy, J. J. Mattos, E. B. da Silva, C. A. C. de Albuquerque, and E. A. de Almeida. (2021). Influence of temperature on biomarker responses and histology of the liver of American bullfrog tadpoles (Lithobates catesbeianus, Shaw, 1802) exposed to the herbicide Tebuthiuron. Science of the Total Environment, 771, 144971.  https://doi.org/10.1016/j.scitotenv.2021.144971.

  • Han, Q. F., Zhao, S., Zhang, X. R., Wang, X. L., Song, C., & Wang, S. G. (2020). Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China. Environment International, 138, 105551. https://doi.org/10.1016/j.envint.2020.105551

    Article  CAS  Google Scholar 

  • He, K., Hain, E., Timm, A., Tarnowski, M., & Blaney, L. (2019). Occurrence of antibiotics, estrogenic hormones, and UV-filters in water, sediment, and oyster tissue from the Chesapeake Bay. Science of the Total Environment, 650, 3101–3109. https://doi.org/10.1016/j.scitotenv.2018.10.021

    Article  CAS  Google Scholar 

  • Houde, M., Carter, B., & Douville, M. (2013). Sublethal effects of the flame retardant intermediate hexachlorocyclopentadiene (HCCPD) on the gene transcription and protein activity of Daphnia magna. Aquatic Toxicology, 140–141, 213–219. https://doi.org/10.1016/j.aquatox.2013.06.008

    Article  CAS  Google Scholar 

  • Huang, F., An, Z., Moran, M. J., & Liu, F. (2020a). Recognition of typical antibiotic residues in environmental media related to groundwater in China (2009–2019). Journal of Hazardous Materials, 399, 122813. https://doi.org/10.1016/j.jhazmat.2020.122813

    Article  CAS  Google Scholar 

  • Huang, J. N., Wen, B., Meng, L. J., Li, X. X., Wang, M. H., Gao, J. Z., & Chen, Z. Z. (2020b). Integrated response of growth, antioxidant defense and isotopic composition to microplastics in juvenile guppy (Poecilia reticulata). Journal of Hazardous Materials, 399, 123044. https://doi.org/10.1016/j.jhazmat.2020.123044

    Article  CAS  Google Scholar 

  • Iftikhar, N., Zafar, R., & Hashmi, I. (2022). Multi-biomarkers approach to determine the toxicological impacts of sulfamethoxazole antibiotic on freshwater fish Cyprinus carpio. Ecotoxicology and Environmental Safety, 233, 113331. https://doi.org/10.1016/j.ecoenv.2022.113331

    Article  CAS  Google Scholar 

  • Iheanacho, S. C., & Odo, G. E. (2020). Neurotoxicity, oxidative stress biomarkers and haematological responses in African catfish (Clarias gariepinus) exposed to polyvinyl chloride microparticles. Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 232, 108741. https://doi.org/10.1016/j.cbpc.2020.108741

    Article  CAS  Google Scholar 

  • Jay, M., Bradley, S., & McDearmid, J. R. (2014). Effects of nitric oxide on neuromuscular properties of developing zebrafish embryos. PLoS One, 9, e86930. https://doi.org/10.1371/journal.pone.0086930

    Article  CAS  Google Scholar 

  • Kim, W. K., & Jung, J. (2016). In situ impact assessment of wastewater effluents by integrating multi-level biomarker responses in the pale chub (Zacco platypus). Ecotoxicology and Environmental Safety, 128, 246–251. https://doi.org/10.1016/j.ecoenv.2016.02.028

    Article  CAS  Google Scholar 

  • Kong, H., Wu, F., Jiang, X., Wang, T., Hu, M., Chen, J., Huang, W., Bao, Y., & Wang, Y. (2019). Nano-TiO2 impairs digestive enzyme activities of marine mussels under ocean acidification. Chemosphere, 237, 124561. https://doi.org/10.1016/j.chemosphere.2019.124561

    Article  CAS  Google Scholar 

  • Lam, S. H., Ung, C. Y., Hlaing, M. M., Hu, J., Li, Z. H., Mathavan, S., & Gong, Z. Y. (2013). Molecular insights into 4-nitrophenol-induced hepatotoxicity in zebrafish: Transcriptomic, histological and targeted gene expression analyses. Biochimica Et Biophysica Acta-General Subjects, 1830, 4778–4789. https://doi.org/10.1016/j.bbagen.2013.06.008

    Article  CAS  Google Scholar 

  • Li, P., & Li, Z. H. (2020). Tributyltin induces the tissue-specific stresses in zebrafish, a study in various tissues of muscle, gill and intestine. Bulletin of Environment Contamination and Toxicology, 105, 847–852. https://doi.org/10.1007/s00128-020-03048-9

    Article  CAS  Google Scholar 

  • Li, K., Liu, L., Zhan, J., Scippo, M. L., Hvidtfeldt, K., Liu, Y., & Dalsgaard, A. (2017). Sources and fate of antimicrobials in integrated fish-pig and non-integrated tilapia farms. Science of the Total Environment, 595, 393–399. https://doi.org/10.1016/j.scitotenv.2017.01.124

    Article  CAS  Google Scholar 

  • Li, Y., Mou, Y., Thunders, M., Wu, Y., Ai, X., Zhou, X., & Qiu, J. (2018). Effects of enrofloxacin on antioxidant system, microsomal enzymatic activity, and proteomics in porcine liver. Journal of Veterinary Pharmacology and Therapeutics, 41, 562–571. https://doi.org/10.1111/jvp.12493

    Article  CAS  Google Scholar 

  • Li, W., Wang, S., Li, J., Wang, X., Cui, L., Chen, J., & Liu, Z. (2020a). Antioxidative enzyme activities in the Rhodeinae sinensis Gunther and Macrobrachium nipponense and multi-endpoint assessment under tonalide exposure. Ecotoxicology and Environmental Safety, 199, 110751. https://doi.org/10.1016/j.ecoenv.2020.110751

    Article  CAS  Google Scholar 

  • Li, Z., Li, M., Zhang, Z., Li, P., Zang, Y., & Liu, X. (2020b). Antibiotics in aquatic environments of China: A review and meta-analysis. Ecotoxicology and Environmental Safety, 199, 110668. https://doi.org/10.1016/j.ecoenv.2020.110668

    Article  CAS  Google Scholar 

  • Liang, J. P., Li, J., Li, J. T., Liu, P., Chang, Z. Q., & Nie, G. X. (2014). Accumulation and elimination of enrofloxacin and its metabolite ciprofloxacin in the ridgetail white prawn Exopalaemon carinicauda following medicated feed and bath administration. Journal of Veterinary Pharmacology and Therapeutics, 37, 508–514. https://doi.org/10.1111/jvp.12115

    Article  CAS  Google Scholar 

  • Liao, T., Li, B., Zhang, Z., Feng, W., Chen, Y., Ding, Y., Chen, H., Zhao, T., Mao, G., Wu, X., & Yang, L. (2021). Short-term exposure of decabromodiphenyl ether in female adult Balb/c mice: Immune toxicity and self-recovery. Toxicology Letters, 342, 26–37. https://doi.org/10.1016/j.toxlet.2021.02.002

    Article  CAS  Google Scholar 

  • Limbu, S. M., Chen, L.-Q., Zhang, M.-L., & Zhen-Yu, Du. (2020). A global analysis on the systemic effects of antibiotics in cultured fish and their potential human health risk: A review. Reviews in Aquaculture, 13, 1015–1059. https://doi.org/10.1111/raq.12511

    Article  Google Scholar 

  • Lin, T., Zhou, D., Dong, J., Jiang, F., & Chen, W. (2016). Acute toxicity of dichloroacetonitrile (DCAN), a typical nitrogenous disinfection by-product (N-DBP), on zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 133, 97–104. https://doi.org/10.1016/j.ecoenv.2016.06.047

    Article  CAS  Google Scholar 

  • Liu, C. M., Zheng, G. H., Ming, Q. L., Sun, J. M., & Cheng, C. (2013). Protective effect of puerarin on lead-induced mouse cognitive impairment via altering activities of acetyl cholinesterase, monoamine oxidase and nitric oxide synthase. Environmental Toxicology and Pharmacology, 35, 502–510. https://doi.org/10.1016/j.etap.2013.02.009

    Article  CAS  Google Scholar 

  • Liu, B., Cui, Y., Brown, P. B., Ge, X., Xie, J., & Xu, P. (2015). Cytotoxic effects and apoptosis induction of enrofloxacin in hepatic cell line of grass carp (Ctenopharyngodon idellus). Fish & Shellfish Immunology, 47, 639–644. https://doi.org/10.1016/j.fsi.2015.10.007

    Article  CAS  Google Scholar 

  • Livak, K. J., & Schmittgen, T. J. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCt method. Methods, 25(402), 08.

    Google Scholar 

  • Magara, G., Elia, A. C., Syberg, K., & Khan, F. R. (2018). Single contaminant and combined exposures of polyethylene microplastics and fluoranthene: Accumulation and oxidative stress response in the blue mussel, Mytilus edulis. Journal of Toxicology and Environmental Health. Part A, 81, 761–773. https://doi.org/10.1080/15287394.2018.1488639

    Article  CAS  Google Scholar 

  • Mukherjee, A., Bhowmick, A. R., Mukherjee, J., & Moniruzzaman, M. (2019). Physiological response of fish under variable acidic conditions: A molecular approach through the assessment of an eco-physiological marker in the brain. Environmental Science and Pollution Research International, 26, 23442–23452. https://doi.org/10.1007/s11356-019-05602-3

    Article  CAS  Google Scholar 

  • Mukherjee, D., Ferreira, N. G. C., & Saha, N. C. (2022). Effects of 2,4,6-Trichlorophenol on Clarias batrachus: A biomarkers approach. Environmental Science and Pollution Research International, 29, 47011–47024. https://doi.org/10.1007/s11356-022-19213-y

    Article  CAS  Google Scholar 

  • Pan, J. F., Buffet, P. E., Poirier, L., Amiard-Triquet, C., Gilliland, D., Joubert, Y., Pilet, P., Guibbolini, M., Risso de Faverney, C., Romeo, M., Valsami-Jones, E., & Mouneyrac, C. (2012). Size dependent bioaccumulation and ecotoxicity of gold nanoparticles in an endobenthic invertebrate: The Tellinid clam Scrobicularia plana. Environmental Pollution, 168, 37–43. https://doi.org/10.1016/j.envpol.2012.03.051

    Article  CAS  Google Scholar 

  • Perussolo, M. C., Guiloski, I. C., Lirola, J. R., Fockink, D. H., Corso, C. R., Bozza, D. C., Prodocimo, V., Mela, M., Ramos, L. P., Cestari, M. M., Acco, A., & Silva de Assis, H. C. (2019). Integrated biomarker response index to assess toxic effects of environmentally relevant concentrations of paracetamol in a neotropical catfish (Rhamdia quelen). Ecotoxicology and Environmental Safety, 182, 109438. https://doi.org/10.1016/j.ecoenv.2019.109438

    Article  CAS  Google Scholar 

  • Phillips, B. E., Harms, C. A., Lewbart, G. A., Lahner, L. L., Haulena, M., Rosenberg, J. F., & Papich, M. G. (2016). Population pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in the green sea urchin (Strongylocentrotus droebachiensis) following intracoelomic and immersion administration. Journal of Zoo and Wildlife Medicine, 47, 175–186. https://doi.org/10.1638/2015-0110.1

    Article  Google Scholar 

  • Qiu, W., Liu, T., Liu, X., Chen, H., Luo, S., Chen, Q., Magnuson, J. T., Zheng, C., Xu, E. G., & Schlenk, D. (2022). Enrofloxacin Induces intestinal microbiota-mediated immunosuppression in zebrafish. Environmental Science and Technology, 56, 8428–8437. https://doi.org/10.1021/acs.est.1c08712

    Article  CAS  Google Scholar 

  • Regoli, F., & Giuliani, M. E. (2014). Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Marine Environmental Research, 93, 106–117. https://doi.org/10.1016/j.marenvres.2013.07.006

    Article  CAS  Google Scholar 

  • Ren, Z., Xu, H., Wang, Y., Li, Y., Han, S., & Ren, J. (2021). Combined toxicity characteristics and regulation of residual quinolone antibiotics in water environment. Chemosphere, 263, 128301. https://doi.org/10.1016/j.chemosphere.2020.128301

    Article  CAS  Google Scholar 

  • Rodrigues, S., Antunes, S. C., Correia, A. T., Golovko, O., Zlabek, V., & Nunes, B. (2019). Assessment of toxic effects of the antibiotic erythromycin on the marine fish gilthead seabream (Sparus aurata L.) by a multi-biomarker approach. Chemosphere, 216, 234–247. https://doi.org/10.1016/j.chemosphere.2018.10.124

    Article  CAS  Google Scholar 

  • Samanta, P., Im, H., Yoo, J., Lee, H., Kim, N. Y., Kim, W., Hwang, S. J., Kim, W. K., & Jung, J. (2018). Comparative assessment of the adverse outcome of wastewater effluents by integrating oxidative stress and histopathological alterations in endemic fish. Journal of Hazardous Materials, 344, 81–89. https://doi.org/10.1016/j.jhazmat.2017.10.016

    Article  CAS  Google Scholar 

  • Sanchez, W., Burgeot, T., & Porcher, J. M. (2013). A novel “Integrated Biomarker Response” calculation based on reference deviation concept. Environmental Science and Pollution Research International, 20, 2721–2725. https://doi.org/10.1007/s11356-012-1359-1

    Article  CAS  Google Scholar 

  • Schwarzenberger, A., & Fink, P. (2018). Gene expression and activity of digestive enzymes of Daphnia pulex in response to food quality differences. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 218, 23–29. https://doi.org/10.1016/j.cbpb.2018.01.009

    Article  CAS  Google Scholar 

  • Sehonova, P., Tokanova, N., Hodkovicova, N., Kocour Kroupova, H., Tumova, J., Blahova, J., Marsalek, P., Plhalova, L., Doubkova, V., Dobsikova, R., Chloupek, P., Dolezalova, P., Faldyna, M., Svobodova, Z., & Faggio, C. (2019). Oxidative stress induced by fluoroquinolone enrofloxacin in zebrafish (Danio rerio) can be ameliorated after a prolonged exposure. Environmental Toxicology and Pharmacology, 67, 87–93. https://doi.org/10.1016/j.etap.2019.02.002

    Article  CAS  Google Scholar 

  • Serafini, S., de Freitas Souza, C., Baldissera, M. D., Baldisserotto, B., & Da Silva, A. S. (2020). Nitric oxide levels in brain, liver, and gills of silver catfish (Rhamdia quelen) exposed to the antiparasitic eprinomectin. Fish Physiology and Biochemistry, 46, 1867–1872. https://doi.org/10.1007/s10695-020-00836-2

    Article  CAS  Google Scholar 

  • Shi, Q., Wang, M., Shi, F., Yang, L., Guo, Y., Feng, C., Liu, J., & Zhou, B. (2018). Developmental neurotoxicity of triphenyl phosphate in zebrafish larvae. Aquatic Toxicology, 203, 80–87. https://doi.org/10.1016/j.aquatox.2018.08.001

    Article  CAS  Google Scholar 

  • Silva, C. S. E., Novais, S. C., Simoes, T., Caramalho, M., Gravato, C., Rodrigues, M. J., Maranhao, P., & Lemos, M. F. L. (2018). Using biomarkers to address the impacts of pollution on limpets (Patella depressa) and their mechanisms to cope with stress. Ecological Indicators, 95, 1077–1086. https://doi.org/10.1016/j.ecolind.2017.09.046

    Article  Google Scholar 

  • Su, H., Sun, J., Fang, S., Wei, Y., Zheng, R., Jiang, Y., & Hu, K. (2019). Effects of lactic acid on drug-metabolizing enzymes in Chinese mitten crab (Eriocheir sisnensis) after oral enrofloxacin. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 223, 9–14. https://doi.org/10.1016/j.cbpc.2019.04.017

    Article  CAS  Google Scholar 

  • Sun, X. L., Wang, J. C., Li, Y., Yang, J. J., Jin, J., Shah, S. M., et al. (2014). Novel dummy molecularly imprinted polymers for matrix solid-phase dispersion extraction of eight fluoroquinolones from fish samples. Journal of Chromatography A, 1359, 1–7. https://doi.org/10.1016/j.chroma.2014.07.007

    Article  CAS  Google Scholar 

  • Tang, J., Shi, T., Wu, X., Cao, H., Li, X., Hua, R., Tang, F., & Yue, Y. (2015). The occurrence and distribution of antibiotics in Lake Chaohu, China: Seasonal variation, potential source and risk assessment. Chemosphere, 122, 154–161. https://doi.org/10.1016/j.chemosphere.2014.11.032

    Article  CAS  Google Scholar 

  • Teglia, C. M., Perez, F. A., Michlig, N., Repetti, M. R., Goicoechea, H. C., & Culzoni, M. J. (2019). Occurrence, distribution, and ecological risk of fluoroquinolones in rivers and wastewaters. Environmental Toxicology and Chemistry, 38, 2305–2313. https://doi.org/10.1002/etc.4532

    Article  CAS  Google Scholar 

  • Varol, M., & Sunbul, M. R. (2019). Environmental contaminants in fish species from a large dam reservoir and their potential risks to human health. Ecotoxicology and Environmental Safety, 169, 507–515. https://doi.org/10.1016/j.ecoenv.2018.11.060

    Article  CAS  Google Scholar 

  • Wang, B., Liu, Y., Feng, L., Jiang, W. D., Kuang, S. Y., Jiang, J., Li, S. H., Tang, L., & Zhou, X. Q. (2015). Effects of dietary arginine supplementation on growth performance, flesh quality, muscle antioxidant capacity and antioxidant-related signalling molecule expression in young grass carp (Ctenopharyngodon idella). Food Chemistry, 167, 91–99. https://doi.org/10.1016/j.foodchem.2014.06.091

    Article  CAS  Google Scholar 

  • Wang, S., Li, X., Zhang, M., Jiang, H., Wang, R., Qian, Y., & Li, M. (2021). Ammonia stress disrupts intestinal microbial community and amino acid metabolism of juvenile yellow catfish (Pelteobagrus fulvidraco). Ecotoxicology and Environmental Safety, 227, 112932. https://doi.org/10.1016/j.ecoenv.2021.112932

    Article  CAS  Google Scholar 

  • Wang, Y. L., X. Q. Zhou, W. D. Jiang, P. Wu, Y. Liu, J. Jiang, S. W. Wang, S. Y. Kuang, L. Tang, and L. Feng. (2019). Effects of dietary zearalenone on oxidative stress, cell apoptosis, and tight junction in the intestine of juvenile grass carp (Ctenopharyngodon idella). Toxins (Basel), 11. https://doi.org/10.3390/toxins11060333.

  • Wei, R., Ge, F., Chen, M., & Wang, R. (2012). Occurrence of ciprofloxacin, enrofloxacin, and florfenicol in animal wastewater and water resources. Journal of Environmental Quality, 41, 1481–1486. https://doi.org/10.2134/jeq2012.0014

    Article  CAS  Google Scholar 

  • Xie, D. M., Li, Y. W., Liu, Z. H., & Chen, Q. L. (2019). Inhibitory effect of cadmium exposure on digestive activity, antioxidant capacity and immune defense in the intestine of yellow catfish (Pelteobagrus fulvidraco). Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 222, 65–73. https://doi.org/10.1016/j.cbpc.2019.04.012

    Article  CAS  Google Scholar 

  • Yancheva, V., Velcheva, I., Stoyanova, S., & Georgieva, E. (2016). Histological biomarkers in fish as a tool in ecological risk assessment and monitoring programs: A review. Applied Ecology and Environmental Research, 14, 47–75.

    Article  Google Scholar 

  • Yang, Y., Xiao, Y., Chang, Y., Cui, Y., Klobucar, G., & Li, M. (2018). Intestinal damage, neurotoxicity and biochemical responses caused by tris (2-chloroethyl) phosphate and tricresyl phosphate on earthworm. Ecotoxicology and Environmental Safety, 158, 78–86. https://doi.org/10.1016/j.ecoenv.2018.04.012

    Article  CAS  Google Scholar 

  • Yang, C., Song, G., & Lim, W. (2020). A review of the toxicity in fish exposed to antibiotics. Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 237, 108840. https://doi.org/10.1016/j.cbpc.2020.108840

    Article  CAS  Google Scholar 

  • Yogev, U., Barnes, A., Giladi, I., & Gross, A. (2020). Potential environmental impact resulting from biased fish sampling in intensive aquaculture operations. Science of the Total Environment, 707, 135630. https://doi.org/10.1016/j.scitotenv.2019.135630

    Article  CAS  Google Scholar 

  • Yuan, Z., Shao, X., Miao, Z., Zhao, B., Zheng, Z., & Zhang, J. (2018). Perfluorooctane sulfonate induced neurotoxicity responses associated with neural genes expression, neurotransmitter levels and acetylcholinesterase activity in planarians Dugesia japonica. Chemosphere, 206, 150–156. https://doi.org/10.1016/j.chemosphere.2018.05.011

    Article  CAS  Google Scholar 

  • Zhang, C., Wang, J., Zhang, S., Zhu, L., Du, Z., & Wang, J. (2017). Acute and subchronic toxicity of pyraclostrobin in zebrafish (Danio rerio). Chemosphere, 188, 510–516. https://doi.org/10.1016/j.chemosphere.2017.09.025

    Article  CAS  Google Scholar 

  • Zhang, Y., Wang, L., Zhuang, H., Li, X., Gao, X., An, Z., Liu, X., Yang, H., Wei, W., & Zhang, X. (2019). Excessive use of enrofloxacin leads to growth inhibition of juvenile giant freshwater prawn Macrobrachium rosenbergii. Ecotoxicology and Environmental Safety, 169, 344–352. https://doi.org/10.1016/j.ecoenv.2018.11.042

    Article  CAS  Google Scholar 

  • Zheng, X., Zhou, S., Hu, J., Yang, R., Gu, Z., Qin, J. G., Ma, Z., & Yu, G. (2020). Could the gut microbiota community in the coral trout Plectropomus leopardus (Lacepede, 1802) be affected by antibiotic bath administration? Veterinary Medicine and Science, 6, 649–657. https://doi.org/10.1002/vms3.267

    Article  CAS  Google Scholar 

  • Zhou, L., Limbu, S. M., Qiao, F., Du, Z. Y., & Zhang, M. (2018). Influence of long-term feeding antibiotics on the gut health of zebrafish. Zebrafish, 15, 340–348. https://doi.org/10.1089/zeb.2017.1526

    Article  CAS  Google Scholar 

  • Zhou, M., Yu, S., Hong, B., Li, J., Han, H., & Qie, G. (2021). Antibiotics control in aquaculture requires more than antibiotic-free feeds: A tilapia farming case. Environmental Pollution, 268, 115854. https://doi.org/10.1016/j.envpol.2020.115854

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by National Key R&D Program of China (2018YFD0900905, 2018YFD0900905).

Author information

Authors and Affiliations

Authors

Contributions

Xu-Qian Cao: writing original draft preparation; Xu Wang: methodology and software; Bin Liu: index measurement; Shu-Wen He: index measurement; Zhi-Han Cao: fish culture and sampling; Shao-Ying Xing: fish culture and sampling; Ping Li: writing, reviewing, and editing; Zhi-Hua Li: conceptualization and overall guidance.

Corresponding authors

Correspondence to Ping Li or Zhi-Hua Li.

Ethics declarations

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Approval of Animal Ethics Committee of Shandong University was taken.

Consent to Participate

It is not applicable.

Consent for Publication

All the authors are in agreement with the publishment.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 59 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, XQ., Wang, X., Liu, B. et al. Evaluation of Physiological Stress of Grass Carp Chronically Exposed to Enrofloxacin Based on IBR Index. Water Air Soil Pollut 234, 548 (2023). https://doi.org/10.1007/s11270-023-06574-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06574-4

Keywords

Navigation