Skip to main content

Advertisement

Log in

Microplastics and Polycyclic Aromatic Hydrocarbons: Abundance, Distribution, and Chemical Analyses in the Nash Run, an Urban Tributary to the Anacostia River (Washington, DC, USA)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Microplastics (small plastic particles < 5 mm, MPs) are an emerging pollutant of concern as they are found in the water and sediment of aquatic habitats. Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants which tend to accumulate in aquatic sediments and may be associated with MP degradation. Urban streams have a large impact on these pollutant budgets of large rivers and marine areas. Up to today, there are just a few studies performed on MPs and PAHs together in river systems. MPs and PAHs were investigated to study their abundance and spatial distribution in the Nash Run, a tributary of the Anacostia River in Washington, DC, USA. A chemical characterization of the MPs in the sediment samples was also performed. The total MP concentration ranged from 24 to 127 MP particles/L in water samples. In the sediments, the MP concentrations varied from 0.35 to 4.1 MP particles/g showing a correlation to distance from roadways. Chemical MP analysis revealed that high-density polyethylene (HDPE) was the main chemical MP composition and chemical additives were also identified. Three PAHs, phenanthrene, fluoranthene, and pyrene, were observed in the sediment samples. These PAHs (commonly associated with microplastics) showed a higher concentration than those often occurring in sediments of similar freshwater environments. This is the first study that shows the presence of MPs in both water and sediment and the presence of specific PAHs in sediment at the same sites in a Washington, DC freshwater system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The manuscript has data included as tables. All the data will be also available at 10.57912/22634299, American University’s institutional repository, AURA. Website https://aura.american.edu.

References

  • Alam, F. C., Sembiring, E., Muntalif, B. S., & Suendo, V. (2019). Microplastic distribution in surface water and sediment river around slum and industrial area (case study: Ciwalengke River, Majalaya district, Indonesia). Chemosphere, 224, 637–645.

    Article  CAS  Google Scholar 

  • Alimi, O. S., Farner Budarz, J., Hernandez, L. M., & Tufenkji, N. (2018). Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environmental Science and Technology, 52(4), 1704–1724. https://doi.org/10.1021/acs.est.7b05559

    Article  CAS  Google Scholar 

  • Arias, A. H., Alfonso, M. B., Girones, L., Piccolo, M. C., & Marcovecchio, J. E. (2022). Synthetic microfibers and tyre wear particles pollution in aquatic systems: relevance and mitigation strategies. Environmental Pollution, 295, 118607.

  • Ballentine, D. C., Macko, S. A., Turekian, V. C., Gilhooly, W. P., & Martincigh, B. (1996). Compound specific isotope analysis of fatty acids and polycyclic aromatic hydrocarbons in aerosols: Implications for biomass burning. Organic Geochemistry, 25(1/2), 97–104.

    Article  CAS  Google Scholar 

  • Barnes P. J., Brassell, S. C., Comet, P., Eglinton, G., McEvoy, J., Maxwell, J. R., Wardoper, A. M. K., Volkman, J. K. (1979). Preliminary lipid analyses of core sections 18, 24, and 30 from hole 402A. In:L. Montadert and D.G. Roberts, eds. Initial Reports of the Deep-Sea Drilling Project, 48, 965–976.

  • Bellasi, A., Binda, G., Pozzi, A., Boldrocchi, G., & Bettinetti, R. (2021). The extraction of microplastics from sediments: An overview of existing methods and the proposal of a new and green alternative. Chemosphere, 278, 130357.

    Article  CAS  Google Scholar 

  • Bellasi, A., Binda, G., Pozzi, A., Galafassi, S., Volta, P., & Bettinetti, R. (2020). Microplastic contamination in freshwater environments: A review, focusing on interactions with sediments and benthic organisms. Environments - MDPI, 7(4). https://doi.org/10.3390/environments7040030

  • Bocquené, G., & Galgani, F. (1998). Biological effects of contaminants: Cholinesterase inhibition by organophosphate and carbamate compounds. ICES Techniques in Marine Environmental Sciences, 22(22), 19.

    Google Scholar 

  • Campanale, C., Massarelli, C., Savino, I., Locaputo, V., & Uricchio, V. F. (2020). A detailed review study on potential effects of microplastics and additives of concern on human health. International Journal of Environmental Research and Public Health, 17(4), 1212.

    Article  CAS  Google Scholar 

  • da Costa Araújo, A. P., da Luz, T. M., Ahmed, M. A. I., Ali, M. M., Rahman, M. M., Nataraj, B., de Melo e Silva, D., Barcelo, D., & Malafaia, G. (2023). Toxicity assessment of polyethylene microplastics in combination with a mix of emerging pollutants on Physalaemus cuvieri tadpoles. Journal of Environmental Sciences127, 465–482.

  • de Smit, J. C., Anton, A., Martin, C., Rossbach, S., Bouma, T. J., & Duarte, C. M. (2021). Habitat-forming species trap microplastics into coastal sediment sinks. Science of the Total Environment, 772, 145520. https://doi.org/10.1016/j.scitotenv.2021.145520

    Article  CAS  Google Scholar 

  • Dris, R., Gasperi, J., & Tassin, B. (2018). Sources and fate of microplastics in urban areas: a focus on Paris megacity. In Freshwater Microplastics, pp. 69–83. Springer, Cham. https://doi.org/10.1007/978-3-319-61615-5_4

  • Eerkes-Medrano, D., Thompson, R. C., & Aldridge, D. C. (2015). Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research, 75, 63–82. https://doi.org/10.1016/j.watres.2015.02.012

    Article  CAS  Google Scholar 

  • Foster, G. D., Roberts, E. C., Gruessner, B., & Velinsky, D. J. (2000). Hydrogeochemistry and transport of organic contaminants in an urban watershed of Chesapeake Bay (USA). Applied Geochemistry, 15(7), 901–915. https://doi.org/10.1016/S0883-2927(99)00107-9

    Article  CAS  Google Scholar 

  • Fries, E., & Zarfl, C. (2012). Sorption of polycyclic aromatic hydrocarbons (PAHs) to low and high density polyethylene (PE). Environmental Science and Pollution Research, 19(4), 1296–1304. https://doi.org/10.1007/s11356-011-0655-5

    Article  CAS  Google Scholar 

  • Geyer, R. (2020). Production, use, and fate of synthetic polymers. In Plastic Waste and Recycling, pp. 12–32. https://doi.org/10.1016/B978-0-12-817880-5.00002-5

  • Gimiliani, G. T., Fornari, M., Redígolo, M. M., Bustillos, J. O. W. V., de Souza Abessa, D. M., & Pires, M. A. F. (2020). Simple and cost-effective method for microplastic quantification in estuarine sediment: A case study of the Santos and São Vicente Estuarine System. Case Studies in Chemical and Environmental Engineering, 2, 100020.

    Article  Google Scholar 

  • Gola, D., Tyagi, P. K., Arya, A., Chauhan, N., Agarwal, M., Singh, S. K., & Gola, S. (2021). The impact of microplastics on marine environment: A review. Environmental Nanotechnology, Monitoring & Management, 16, 100552.

    Article  CAS  Google Scholar 

  • Golwala, H., Zhang, X., Iskander, S. M., & Smith, A. L. (2021). Solid waste: An overlooked source of microplastics to the environment. Science of the Total Environment, 769, 144581. https://doi.org/10.1016/j.scitotenv.2020.144581

    Article  CAS  Google Scholar 

  • Guo, X., & Wang, J. (2019). The chemical behaviors of microplastics in marine environment: A review. Marine Pollution Bulletin, 142, 1–14.

    Article  CAS  Google Scholar 

  • He, B., Smith, M., Egodawatta, P., Ayoko, G. A., Rintoul, L., & Goonetilleke, A. (2021). Dispersal and transport of microplastics in river sediments. Environmental Pollution, 279, 116884.

    Article  CAS  Google Scholar 

  • Helcoski, R., Yonkos, L. T., Sanchez, A., & Baldwin, A. H. (2020). Wetland soil microplastics are negatively related to vegetation cover and stem density. Environmental Pollution, 256, 113391. https://doi.org/10.1016/j.envpol.2019.113391

    Article  CAS  Google Scholar 

  • Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science and Technology, 46(6), 3060–3075. https://doi.org/10.1021/es2031505

    Article  CAS  Google Scholar 

  • Honda, M., & Suzuki, N. (2020). Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. International Journal of Environmental Research and Public Health, 17(4), 1363.

    Article  CAS  Google Scholar 

  • Hussar, E., Richards, S., Lin, Z.-Q., Dixon, R. P., & Johnson, K. A. (2012). Human health risk assessment of 16 priority polycyclic aromatic hydrocarbons in soils of Chattanooga, Tennessee, USA. Water, Air, and Soil Pollution, 223, 5535–5535.

    Article  CAS  Google Scholar 

  • Hwang, H. M., & Foster, G. D. (2006). Characterization of polycyclic aromatic hydrocarbons in urban stormwater runoff flowing into the tidal Anacostia River, Washington, DC, USA. Environmental Pollution, 140(3), 416–426.

    Article  CAS  Google Scholar 

  • Iheanacho, S. C., Odo, G. E., & Ezewudo, B. I. (2021). Adulteration of aquafeed with melamine and melamine-formaldehyde chemicals; ex situ study of impact on haematology and antioxidant systems in Clarias gariepinus. Aquaculture Research, 52(5), 2078–2084. https://doi.org/10.1111/are.15059

    Article  CAS  Google Scholar 

  • Kafilzadeh, F., Shiva, A. H., & Malekpour, R. (2011). Determination of polycyclic aromatic hydrocarbons (PAHs) in water and sediments of the Kor River, Iran. Middle-East Journal of Scientific Research, 10(1), 1–07. https://core.ac.uk/download/pdf/143891178.pdf

  • King, A. J., Readman, J. W., & Zhou, J. L. (2004). Determination of polycyclic aromatic hydrocarbons in water by solid-phase microextraction–gas chromatography–mass spectrometry. Analytica Chimica Acta, 523(2), 259–267.

    Article  CAS  Google Scholar 

  • Klasios, N., De Frond, H., Miller, E., Sedlak, M., & Rochman, C. M. (2021). Microplastics and other anthropogenic particles are prevalent in mussels from San Francisco Bay, and show no correlation with PAHs. Environmental Pollution, 271, 116260.

    Article  CAS  Google Scholar 

  • Kotowska, U., Kapelewska, J., & Sawczuk, R. (2020). Occurrence, removal, and environmental risk of phthalates in wastewaters, landfill leachates, and groundwater in Poland. Environmental Pollution, 267. https://doi.org/10.1016/j.envpol.2020.115643

  • Lampert, D. J., Lu, X., & Reible, D. D. (2013). Long-term PAH monitoring results from the Anacostia River active capping demonstration using polydimethylsiloxane (PDMS) fibers. Environmental Science: Processes & Impacts, 15(3), 554–562.

    CAS  Google Scholar 

  • Latos-Brozio, M., & Masek, A. (2020). Biodegradable polyester materials containing gallates. Polymers, 12(3), 677.

    Article  CAS  Google Scholar 

  • Lu, X., Reible, D. D., & Fleeger, J. W. (2006). Bioavailability of polycyclic aromatic hydrocarbons in field-contaminated Anacostia River (Washington, DC) sediment. Environmental Toxicology and Chemistry: An International Journal, 25(11), 2869–2874.

    Article  CAS  Google Scholar 

  • Maeda, M. (2010). Demonstration of trash reduction technologies in the Anacostia Watershed (Nash Run Trash Trap Project). 85pg. DOEE, Final Technical Report. https://doee.dc.gov/sites/default/files/dc/sites/ddoe/publication/attachments/Nash_Run_TT_Final_Tech_Report_Entire.pdf

  • Maheswaran, B., Karmegam, N., Al-Ansari, M., Subbaiya, R., Al-Humaid, L., Raj, J. S., & Govarthanan, M. (2022). Assessment, characterization, and quantification of microplastics from river sediments. Chemosphere, 298, 134268.

    Article  CAS  Google Scholar 

  • Maletić, S., Beljin, J., Tamindžija, D., Grgić, M., Jazić, J. M., Isakovski, M. K., & Rončević, S. (2021). Bioremediation perspective of historically contaminated sediment with polycyclic aromatic hydrocarbons. International Journal of Sediment Research, 36(4), 479–488.

    Article  Google Scholar 

  • McGee, B. L., Pinkney, A. E., Velinsky, D. J., Ashley, J. T., Fisher, D. J., Ferrington, L. C., & Norberg-King, T. J. (2009). Using the sediment quality triad to characterize baseline conditions in the Anacostia River, Washington, DC, USA. Environmental Monitoring and Assessment, 156, 51–67.

    Article  CAS  Google Scholar 

  • McNeish, R. E., Kim, L. H., Barrett, H. A., Mason, S. A., Kelly, J. J., & Hoellein, T. J. (2018). Microplastic in riverine fish is connected to species traits. Scientific Reports, 8(1), 1–12.

    Article  CAS  Google Scholar 

  • Meijer, L. J. J., van Emmerik, T., van der Ent, R., Schmidt, C., & Lebreton, L. (2021). More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Science Advances, 7(18), 1–14. https://doi.org/10.1126/sciadv.aaz5803

    Article  Google Scholar 

  • Mo, Q., Yang, X., Wang, J., Xu, H., Li, W., Fan, Q., Gao, S., Yang, W., Gao, C., Liao, D., Li, Y., & Zhang, Y. (2021). Adsorption mechanism of two pesticides on polyethylene and polypropylene microplastics: DFT calculations and particle size effects. Environmental Pollution, 291(September), 118120. https://doi.org/10.1016/j.envpol.2021.118120

    Article  CAS  Google Scholar 

  • Mustapha, M. U., Halimoon, N., Johar, W. L. W., & Shukor, M. Y. A. (2019). An overview on biodegradation of carbamate pesticides by soil bacteria. Pertanika Journal of Science and Technology, 27(2), 547–563.

    Google Scholar 

  • Nagy, A. S., Szabó, J., & Vass, I. (2014). Occurrence and distribution of polycyclic aromatic hydrocarbons in surface water and sediments of the Danube River and its tributaries, Hungary. Journal of Environmental Science and Health - Part A Toxic/hazardous Substances and Environmental Engineering, 49(10), 1134–1141. https://doi.org/10.1080/10934529.2014.897155

    Article  CAS  Google Scholar 

  • Nicholas, K. (2022). Comparative analysis of fluoranthene, naphthalene, pyrene, decamethylcyclopentasiloxane (D5), and 2,4,6,8-tetramethylcyclotetrasiloxane (2468) in Anacostia and Potomac watershed locations. MS thesis American University, 50pp. https://dra.american.edu/islandora/object/auislandora%3A97494?solr_nav%5Bid%5D=bd2b57a66e7f1651186f&solr_nav%5Bpage%5D=0&solr_nav%5Boffset%5D=6

  • Panin, C. V., Kornienko, L. A., Nguyen Suan, T., Ivanova, L. R., & Poltaranin, M. A. (2015). The effect of adding calcium stearate on wear-resistance of ultra-high molecular weight polyethylene. Procedia Engineering, 113, 490–498. https://doi.org/10.1016/j.proeng.2015.07.341

    Article  CAS  Google Scholar 

  • Rebelein, A., Int-Veen, I., Kammann, U., & Scharsack, J. P. (2021). Microplastic fibers—Underestimated threat to aquatic organisms? Science of the Total Environment, 777, 146045.

    Article  CAS  Google Scholar 

  • Rimondi, V., Monnanni, A., De Beni, E., Bicocchi, G., Chelazzi, D., Cincinelli, A., Fratini, S., Martellini, T., Morelli, G., Venturi, S., & Lattanzi, P. (2022). Occurrence and quantification of natural and microplastic items in urban streams: The case of Mugnone Creek (Florence, Italy). Toxics, 10(4), 159.

    Article  CAS  Google Scholar 

  • Rochman, C. M., Hoh, E., Hentschel, B. T., & Kaye, S. (2013). Long-term field measurements of sorption of organic contaminants to five types of plastic pellets: Implications for plastic marine debris. Environmental Science and Technology, 47, 1646–1654.

    CAS  Google Scholar 

  • Rochman, C. M., Brookson, C., Bikker, J., Djuric, N., Earn, A., Bucci, K., Athey, S., Huntington, A., McIlwraith, H., Munno, K., Frond, H. De, Kolomijeca, A., Erdle, L., Grbic, J., Bayoumi, M., Borrelle, S. B., Wu, T., Santoro, S., Werbowski, L. M., … Hung, C. (2019). Rethinking microplastics as a diverse contaminant suite. Environmental Toxicology and Chemistry, 38(4), 703–711. https://doi.org/10.1002/etc.4371

  • Schumacher, B. A., Shines, K. C., Burton, J. V., & Papp, M. L. (1990). Comparison of three methods for soil homogenization. Soil Science Society of America Journal, 54(4), 1187–1190. https://doi.org/10.2136/sssaj1990.03615995005400040046x

    Article  Google Scholar 

  • Sharma, M. D., Elanjickal, A. I., Mankar, J. S., & Krupadam, R. J. (2020). Assessment of cancer risk of microplastics enriched with polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 398, 122994.

    Article  CAS  Google Scholar 

  • Sørensen, L., Rogers, E., Altin, D., Salaberria, I., & Booth, A. M. (2020). Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions. Environmental Pollution, 258, 113844. https://doi.org/10.1016/j.envpol.2019.113844

    Article  CAS  Google Scholar 

  • Szopińska, M., Szumińska, D., Bialik, R. J., Dymerski, T., Rosenberg, E., & Polkowska, Ż. (2019). Determination of polycyclic aromatic hydrocarbons (PAHs) and other organic pollutants in freshwaters on the western shore of Admiralty Bay (King George Island, Maritime Antarctica). Environmental Science and Pollution Research, 26, 18143–18161.

    Article  Google Scholar 

  • Van Cauwenberghe, L., Vanreusel, A., Mees, J., & Janssen, C. R. (2013). Microplastic pollution in deep-sea sediments. Environmental Pollution, 182, 495–499. https://doi.org/10.1016/j.envpol.2013.08.013

    Article  CAS  Google Scholar 

  • Velinsky, D. J., Riedel, G. F., Ashley, J. T., & Cornwell, J. C. (2011). Historical contamination of the Anacostia River, Washington. DC. Environmental Monitoring and Assessment, 183(1), 307–328.

    Article  CAS  Google Scholar 

  • Wilson, T. P. (2019). Sediment and chemical contaminant loads in tributaries to the Anacostia River, Washington, District of Columbia, 2016–17: U.S. Geological Survey Scientific Investigations Report 2019–5092, 146, https://doi.org/10.3133/sir2019

  • Xie, F., Zhang, T., Bryant, P., Kurusingal, V., Colwell, J. M., & Laycock, B. (2019). Degradation and stabilization of polyurethane elastomers. Progress in Polymer Science, 90, 211–268.

    Article  CAS  Google Scholar 

  • Zhang, K., Hamidian, A. H., Tubić, A., Zhang, Y., Fang, J. K., Wu, C., & Lam, P. K. (2021). Understanding plastic degradation and microplastic formation in the environment: A review. Environmental Pollution, 274, 116554.

    Article  CAS  Google Scholar 

  • Zhou, C., Bi, R., Su, C., Liu, W., & Wang, T. (2022). The emerging issue of microplastics in marine environment: A bibliometric analysis from 2004 to 2020. Marine Pollution Bulletin, 179, 113712.

    Article  CAS  Google Scholar 

  • Zobkov, M. B., & Esiukova, E. E. (2018). Microplastics in a marine environment: Review of methods for sampling, processing, and analyzing microplastics in water, bottom sediments, and coastal deposits. Oceanology, 58(1), 137–143.

Download references

Acknowledgements

We would like to thank two anonymous reviewers that improved a previous version of the manuscript. We would also like to thank Jonathan Craig for the fruitful discussions. We would like to thank Matt Robinson, currently with the U.S. EPA’s Chesapeake Bay Program office, and formally with DC’s Department of Energy & Environment (DOEE), for his support and introduction to Nash Run. Finally, we would also like to thank all the students who helped with the field.

Funding

This project was partly funded through a partnership of the National Marine Sanctuary Foundation and the National Oceanic and Atmospheric Administration Marine Debris Program (Award #20–10-B-283 Project title “Microplastic Research in the Anacostia River Watershed”). The project also was partially funded by American University’s (AU) College of Arts and Science (CAS) Graduate Student Research Funds to Elisa Davey. A Mellon Grant from CAS, AU, was awarded to Barbara Balestra and Jesse Meiller in Fall 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Balestra.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2704 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davey, E., Meiller, J., MacAvoy, S. et al. Microplastics and Polycyclic Aromatic Hydrocarbons: Abundance, Distribution, and Chemical Analyses in the Nash Run, an Urban Tributary to the Anacostia River (Washington, DC, USA). Water Air Soil Pollut 234, 493 (2023). https://doi.org/10.1007/s11270-023-06468-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06468-5

Keywords

Navigation