Skip to main content
Log in

One-Step Synthesis of Recyclable Ti-Doped Porous SiO2 Microspheres with Superior Structural Stability for Cationic Dye Adsorption

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Dyes are hazardous to public health and the environment. Herein, we synthesized Ti-doped porous SiO2 microspheres utilizing a one-step sol-gel method as an effective adsorbent for the removal of cationic dyes from wastewater. The study of the varying individual parameters such as titanium-silica ratio, pH, adsorbent dose, and dye concentration indicated that the adsorption of methylene blue (MB) by Si3TiO10 microspheres exhibited excellent performance, including a wide range of applications (pH = 4–11), fast adsorption rate (15 min removed 90.8% of MB), high adsorption capacity (215.29 mg/g), excellent selectivity (adsorption capacity toward cationic dyes (98%) and < 5% toward anionic dyes), easy desorption steps, steady performance and multiple cycles (10 times). In addition, the adsorption process of MB by microspheres is consistent with the proposed second-order kinetic model (R2 = 0.999) and Langmuir isothermal model (RL2 = 0.997). With the assistance of FT-IR, XRD, XPS, BET, SEM, and TG-DTG techniques, it was demonstrated that the great pore size (8.15 nm) and large specific surface area (267.97 m2/g) of the microspheres could promote the contact between the active site and MB, thus achieving efficient removal of MB by using hydrogen bonding and electrostatic attraction. Furthermore, the unique spherical mesoporous structure, and the Si-O-Ti bond formed by the Ti doping rather than via simple wrapping and adhesion modification, which also ensured the stability of the microspheres during multiple cycles and the desorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All the data generated or analyzed during this study are included in this published article [and its Supplementary Information files].

References

  • Ade, I. A., Tran, H. N., Zhang, J.-W., Wang, Y.-C., Dat, N. D., Nguyen, D. T., & Chao, H.-P. (2022). Adsorption characteristics of lead, copper, cadmium, methylene blue, phenol, and toluene in water using composite synthesized from titanium dioxides and carbon spheres through hydrothermal method. Journal of Water Process Engineering, 50, 103221. https://doi.org/10.1016/j.jwpe.2022.103221

    Article  Google Scholar 

  • Aldegs, Y., Elbarghouthi, M., Elsheikh, A., & Walker, G. (2008). Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes and Pigments, 77(1), 16–23. https://doi.org/10.1016/j.dyepig.2007.03.001

    Article  CAS  Google Scholar 

  • Bai, X., Sun, H., Sun, J., & Zhu, Z. (2022). Efficient removal of sixteen priority polycyclic aromatic hydrocarbons from textile dyeing sludge using electrochemical Fe2+-activated peroxymonosulfate oxidation-A green pretreatment strategy for textile dyeing sludge toxicity reduction. Journal of Hazardous Materials, 435, 129087. https://doi.org/10.1016/j.jhazmat.2022.129087

    Article  CAS  Google Scholar 

  • Bhatnagar, A., Sillanpää, M., & Witek-Krowiak, A. (2015). Agricultural waste peels as versatile biomass for water purification – A review. Chemical Engineering Journal, 270, 244–271. https://doi.org/10.1016/j.cej.2015.01.135

    Article  CAS  Google Scholar 

  • Bilal, M., Ihsanullah, I., Hassan Shah, M. U., Bhaskar Reddy, A. V., & Aminabhavi, T. M. (2022). Recent advances in the removal of dyes from wastewater using low-cost adsorbents. Journal of Environmental Management, 321, 115981. https://doi.org/10.1016/j.jenvman.2022.115981

    Article  CAS  Google Scholar 

  • Cheng, Z., Luo, S., Li, X., Zhang, S., Thang Nguyen, T., Guo, M., & Gao, X. (2021). Ultrasound-assisted heterogeneous Fenton-like process for methylene blue removal using magnetic MnFe2O4/biochar nanocomposite. Applied Surface Science, 566, 150654. https://doi.org/10.1016/j.apsusc.2021.150654

    Article  CAS  Google Scholar 

  • Din Mir, N. U., Shahwaz Ahmad, M., Khan, S., Yasir Khan, M., Vakil, F., Saraswat, S., & Shahid, M. (2022). Simpler is better: A heterometallic (Mn-Na) metal organic framework (MOF) with a rare myc topology synthesized from bench chemicals for selective adsorption and separation of organic dyes. Inorganic Chemistry Communications, 146, 110046. https://doi.org/10.1016/j.inoche.2022.110046

    Article  CAS  Google Scholar 

  • Ferreira-Neto, E. P., Ullah, S., Martinez, V. P., Yabarrena, J. M. S. C., Simões, M. B., Perissinotto, A. P., et al. (2021). Thermally stable SiO2@TiO2 core@shell nanoparticles for application in photocatalytic self-cleaning ceramic tiles. Materials Advances, 2(6), 2085–2096. https://doi.org/10.1039/D0MA00785D

    Article  CAS  Google Scholar 

  • Fujishima, M., Takatori, H., & Tada, H. (2011). Interfacial chemical bonding effect on the photocatalytic activity of TiO2–SiO2 nanocoupling systems. Journal of Colloid and Interface Science, 361(2), 628–631. https://doi.org/10.1016/j.jcis.2011.06.024

    Article  CAS  Google Scholar 

  • Ghaedi, S., Seifpanahi-Shabani, K., & Sillanpää, M. (2022). Waste-to-resource: New application of modified mine silicate waste to remove Pb2+ ion and methylene blue dye, adsorption properties, mechanism of action and recycling. Chemosphere, 292, 133412. https://doi.org/10.1016/j.chemosphere.2021.133412

    Article  CAS  Google Scholar 

  • Gollakota, A. R. K., Munagapati, V. S., Shadangi, K. P., Reddy, G. M., Wen, J.-C., & Shu, C.-M. (2021). Encapsulating toxic rhodamine 6G dye, and Cr (VI) metal ions from liquid phase using AlPO4-5 molecular sieves. Preparation, characterization, and adsorption parameters. Journal of Molecular Liquids, 336, 116549. https://doi.org/10.1016/j.molliq.2021.116549

    Article  CAS  Google Scholar 

  • Hachemaoui, M., Boukoussa, B., Adel, M., Mekki, A., & Hamacha, R. B. (2020). Dyes adsorption, antifungal and antibacterial properties of metal loaded mesoporous silica: Effect of metal and calcination treatment. Materials Chemistry and Physics, 256, 123704.

    Article  CAS  Google Scholar 

  • Hadi, S., Taheri, E., Amin, M. M., Fatehizadeh, A., & Gardas, R. L. (2021). Empirical modeling and kinetic study of methylene blue removal from synthetic wastewater by activation of persulfate with heterogeneous Fenton-like process. Journal of Molecular Liquids, 328, 115408. https://doi.org/10.1016/j.molliq.2021.115408

    Article  CAS  Google Scholar 

  • Hara, T., Nabei, H., & Kyuka, A. (2020). Activated carbon/titanium dioxide composite to adsorb volatile organic compounds associated with human body odor. Heliyon, 6(11), e05455.

    Article  CAS  Google Scholar 

  • Ho, Y. S. (1999). Pseudo-second order model for sorption processes. Process biochemistry, 34(5), 451–465.

    Article  CAS  Google Scholar 

  • Hou, J., Chen, Y., Shi, W., Bao, C., & Hu, X. (2020). Graphene oxide/methylene blue composite membrane for dyes separation: Formation mechanism and separation performance. Applied Surface Science, 505, 144145. https://doi.org/10.1016/j.apsusc.2019.144145

    Article  CAS  Google Scholar 

  • Ihaddaden, S., Aberkane, D., Boukerroui, A., & Robert, D. (2022). Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). Journal of Water Process Engineering, 49, 102952. https://doi.org/10.1016/j.jwpe.2022.102952

    Article  Google Scholar 

  • Javadian, H., & Taghavi, M. (2014). Application of novel polypyrrole/thiol-functionalized zeolite Beta/MCM-41 type mesoporous silica nanocomposite for adsorption of Hg2+ from aqueous solution and industrial wastewater: Kinetic, isotherm and thermodynamic studies. Applied Surface Science, 289, 487–494.

    Article  CAS  Google Scholar 

  • Jia, Z., Han, C., Wu, L., Zhang, D., & Li, M. (2022). Biotemplated synthesis of hollow nickel silicate fiber for organic dye contaminants and its selective adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, 129219. https://doi.org/10.1016/j.colsurfa.2022.129219

    Article  CAS  Google Scholar 

  • Jiang, Q., Huang, J., Ma, B., Yang, Z., Zhang, T., & Wang, X. (2020). Recyclable, hierarchical hollow photocatalyst TiO2@SiO2 composite microsphere realized by raspberry-like SiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 602, 125112. https://doi.org/10.1016/j.colsurfa.2020.125112

    Article  CAS  Google Scholar 

  • Jian-wen, S., Shao-hua, C., Shu-mei, W., et al. (2009). Favorable recycling photocatalyst TiO2/CFA: Effects of loading method on the structural property and photocatalytic activity. Journal of Molecular Catalysis A: Chemical, 303(1–2), 141–147.

    Google Scholar 

  • Kang, S., Liu, W., Wang, Y., Wang, Y., Wu, S., Chen, S., et al. (2022). Starch-derived flocculant with hyperbranched brush architecture for effectively flocculating organic dyes, heavy metals and antibiotics. Journal of the Taiwan Institute of Chemical Engineers, 135, 104383. https://doi.org/10.1016/j.jtice.2022.104383

    Article  CAS  Google Scholar 

  • Khan, M., & Cao, W. (2013). Preparation of Y-doped TiO2 by hydrothermal method and investigation of its visible light photocatalytic activity by the degradation of methylene blue. Journal of Molecular Catalysis A Chemical, 376, 71–77.

    Article  CAS  Google Scholar 

  • Khanna, S., Gotipamul, P. P., Rajan, K. D., Kumar, G. M., Chidambaram, S., & Rathinam, M. (2022). Rapid selective adsorption of hazardous dyes using charge controlled NiO layers encapsulated SiO2 core-shell nanostructures. Ceramics International, 48(19), 28969–28979. https://doi.org/10.1016/j.ceramint.2022.04.169

    Article  CAS  Google Scholar 

  • Lan, D., Zhu, H., Zhang, J., Li, S., Chen, Q., Wang, C., et al. (2022). Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives. Chemosphere, 293, 133464. https://doi.org/10.1016/j.chemosphere.2021.133464

    Article  CAS  Google Scholar 

  • Lei, C., Bian, Y., Zhi, F., Hou, X., Lv, C., & Hu, Q. (2022). Enhanced adsorption capacity of cellulose hydrogel based on corn stalk for pollutants removal and mechanism exploration. Journal of Cleaner Production, 375, 134130. https://doi.org/10.1016/j.jclepro.2022.134130

    Article  CAS  Google Scholar 

  • Liang Mian, Y., Di, Z., Chong, H., & Ying, L. L. (2019). Adsorption and photodegradation of methylene blue by titanium dioxide - silica composites. Water Supply Technology, 13(6), 5.

    Google Scholar 

  • Liang, Z., Zhao, Z., Sun, T., Shi, W., & Cui, F. (2017). Enhanced adsorption of the cationic dyes in the spherical CuO/meso-silica nano composite and impact of solution chemistry. Journal of Colloid and Interface Science, 485, 192–200. https://doi.org/10.1016/j.jcis.2016.09.028

    Article  CAS  Google Scholar 

  • Lin, R., Liang, Z., Yang, C., Zhao, Z., & Cui, F. (2020). Selective adsorption of organic pigments on inorganically modified mesoporous biochar and its mechanism based on molecular structure. Journal of Colloid and Interface Science, 573, 21–30. https://doi.org/10.1016/j.jcis.2020.03.112

    Article  CAS  Google Scholar 

  • Liu, J., Li, M., Wang, J., Song, Y., Jiang, L., Murakami, T., & Fujishima, A. (2009). Hierarchically macro-/mesoporous Ti−Si oxides photonic crystal with highly efficient photocatalytic capability. Environmental Science & Technology, 43(24), 9425–9431.

    Article  CAS  Google Scholar 

  • Ma, J., Wei, Y., Liu, W. X., & Cao, W. B. (2009). Preparation of nanocrystalline Fe-doped TiO2 powders as a visible-light-responsive photocatalyst. Research on Chemical Intermediates, 35(3), 329–336.

    Article  CAS  Google Scholar 

  • Mahanta, U., Khandelwal, M., & Deshpande, A. S. (2022). TiO2@SiO2 nanoparticles for methylene blue removal and photocatalytic degradation under natural sunlight and low-power UV light. Applied Surface Science, 576, 151745.

    Article  CAS  Google Scholar 

  • Mais, L., Vacca, A., Mascia, M., Usai, E. M., Tronci, S., & Palmas, S. (2020). Experimental study on the optimisation of azo-dyes removal by photo-electrochemical oxidation with TiO2 nanotubes. Chemosphere, 248, 125938.

    Article  CAS  Google Scholar 

  • Oninla, V. O., Awokoya, K. N., Babalola, J. O., Balogun, K. I., & Ismail, O. S. (2022). Optimization of synthesis conditions for graft copolymerization of methacrylic acid onto Garcinia kola pods and use in the sequestration of cationic dyes from simulated wastewaters Biomass Conversion and Biorefinery. 2022:1-8.

  • Qin, P., Chen, D., Li, M., Li, D., Gao, Y., Zhu, S., et al. (2022). Melamine/MIL-101(Fe)-derived magnetic carbon nanotube-decorated nitrogen-doped carbon materials as sorbent for rapid removal of organic dyes from environmental water sample. Journal of Molecular Liquids, 359, 119231. https://doi.org/10.1016/j.molliq.2022.119231

    Article  CAS  Google Scholar 

  • Raza, N., Raza, W., Gul, H., Azam, M., & Kim, K. H. (2020a). Solar-light-active silver phosphate/titanium dioxide/silica heterostructures for photocatalytic removal of organic dye. Journal of Cleaner Production, 254, 120031.

    Article  CAS  Google Scholar 

  • Raza, N., Raza, W., Gul, H., Azam, M., Lee, J., Vikrant, K., & Kim, K.-H. (2020b). Solar-light-active silver phosphate/titanium dioxide/silica heterostructures for photocatalytic removal of organic dye. Journal of Cleaner Production, 254, 120031. https://doi.org/10.1016/j.jclepro.2020.120031

    Article  CAS  Google Scholar 

  • Riaz, M., Khan, N., Khan, S. A., Ahmad, Z., Khan, M. A., Iqbal, M., Hemeg, H. A., Bakhsh, E. M., & Khan, S. B. (2022). Enhanced catalytic reduction/degradation of organic pollutants and antimicrobial activity with metallic nanoparticles immobilized on copolymer modified with NaY zeolite films. Journal of Molecular Liquids, 359, 119246. https://doi.org/10.1016/j.molliq.2022.119246

    Article  CAS  Google Scholar 

  • Roghanizad, A., Abdolmaleki, M. K., Ghoreishi, S. M., & Dinari, M. (2020). One-pot synthesis of functionalized mesoporous fibrous silica nanospheres for dye adsorption: isotherm, kinetic, and thermodynamic studies. Journal of Molecular Liquids, 300, 112367.

    Article  CAS  Google Scholar 

  • Ruan, C., Ma, Y., Shi, G., He, C., Du, C., Jin, X., et al. (2022). Self-assembly cellulose nanocrystals/SiO2 composite aerogel under freeze-drying: Adsorption towards dye contaminant. Applied Surface Science, 592, 153280. https://doi.org/10.1016/j.apsusc.2022.153280

    Article  CAS  Google Scholar 

  • Ruello, J. L. A., & Kim, H. (2022). Microwave-induced fabrication of fiber-reinforced adsorbent from waste cardboard and chitosan for effective dye removal. Journal of Environmental Chemical Engineering, 10(6), 108724. https://doi.org/10.1016/j.jece.2022.108724

    Article  CAS  Google Scholar 

  • Sboui, N., Agougui, H., Jabli, M., & Boughzala, K. (2022). Synthesis, physico-chemical, and structural properties of silicate apatites: Effect of synthetic methods on apatite structure and dye removal. Inorganic Chemistry Communications, 142, 109628. https://doi.org/10.1016/j.inoche.2022.109628

    Article  CAS  Google Scholar 

  • Sharma, S., Sharma, G., Kumar, A., TS, A. G., Naushad, M., ZA, A. L. O., & Stadler, F. J. (2022). Adsorption of cationic dyes onto carrageenan and itaconic acid-based superabsorbent hydrogel: Synthesis, characterization and isotherm analysis. Journal of Hazardous Materials, 421, 126729. https://doi.org/10.1016/j.jhazmat.2021.126729

    Article  CAS  Google Scholar 

  • Shu, X., Chen, Y., Yuan, H., Gao, S., & Xiao, D. (2007). H2O2 sensor based on the room-temperature phosphorescence of nano TiO2/SiO2 composite. Analytical Chemistry, 79(10), 3695–3702. https://doi.org/10.1021/ac0624142

    Article  CAS  Google Scholar 

  • Tang, Z., Hu, X., Ding, H., Li, Z., Liang, R., & Sun, G. (2021). Villi-like poly(acrylic acid) based hydrogel adsorbent with fast and highly efficient methylene blue removing ability. Journal of Colloid and Interface Science, 594, 54–63. https://doi.org/10.1016/j.jcis.2021.02.124

    Article  CAS  Google Scholar 

  • Veregue, F. R., Lima, H., Ribeiro, S. C., Almeida, M. S., & Rinaldi, A. W. (2020). MCM-41/chondroitin sulfate hybrid hydrogels with remarkable mechanical properties and superabsorption of methylene blue. Carbohydrate Polymers, 247, 116558.

    Article  CAS  Google Scholar 

  • Vilar, V. J. P., Botelho, C. M. S., & Boaventura, R. A. R. (2005). Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste. Process Biochemistry, 40(10), 3267–3275. https://doi.org/10.1016/j.procbio.2005.03.023

    Article  CAS  Google Scholar 

  • Wang, Q., Ju, J., Tan, Y., Hao, L., Ma, Y., Wu, Y., et al. (2019). Controlled synthesis of sodium alginate electrospun nanofiber membranes for multi-occasion adsorption and separation of methylene blue. Carbohydrate Polymers, 205, 125–134. https://doi.org/10.1016/j.carbpol.2018.10.023

    Article  CAS  Google Scholar 

  • Wang, W., Tian, G., Wang, D., Zhang, Z., Kang, Y., Zong, L., & Wang, A. (2016). All-into-one strategy to synthesize mesoporous hybrid silicate microspheres from naturally rich red palygorskite clay as high-efficient adsorbents. Scientific Reports, 6(1), 39599.

    Article  CAS  Google Scholar 

  • Xiao, W., Jiang, X., Liu, X., Zhou, W., Garba, Z. N., Lawan, I., et al. (2021). Adsorption of organic dyes from wastewater by metal-doped porous carbon materials. Journal of Cleaner Production, 284, 124773. https://doi.org/10.1016/j.jclepro.2020.124773

    Article  CAS  Google Scholar 

  • Xiao, Z., Wu, R., Shu, T., Wang, Y., & Li, L. (2023). Synthesis of Co-doped Fe metal–organic framework MIL-101(Fe,Co) and efficient degradation of organic dyes in water. Separation and Purification Technology, 304, 122300. https://doi.org/10.1016/j.seppur.2022.122300

    Article  CAS  Google Scholar 

  • Zhang, H., Peng, B., Liu, Q., Wu, C., & Li, Z. (2022). Preparation of porous biochar from heavy bio-oil for adsorption of methylene blue in wastewater. Fuel Processing Technology, 238, 107485. https://doi.org/10.1016/j.fuproc.2022.107485

    Article  CAS  Google Scholar 

  • Zhao, L., Wang, D., Gao, J. S., & Xu, C. M. (2005). Quantum chemical study of TiO2-SiO2 composite oxide structure and infrared spectra. Journal of Catalysis, 026(001), 15–19.

    CAS  Google Scholar 

  • Zhao, Y., Gong, B., Liu, D., et al. (2017). Synthesis of chitosan-functionalized MCM-41-A and its performance in Pb(II) removal from synthetic water. Journal of the Taiwan Institute of Chemical Engineers, 71, 537–545.

    Article  Google Scholar 

  • Zhou, C., Gao, Q., Luo, W., Zhou, Q., Wang, H., Yan, C., & Duan, P. (2015). Preparation, characterization and adsorption evaluation of spherical mesoporous Al-MCM-41 from coal fly ash. Journal of the Taiwan Institute of Chemical Engineers, 52, 147–157. https://doi.org/10.1016/j.jtice.2015.02.014

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Natural Science Foundation of Chongqing (cstc2020jscx-msxmX0059) and the domestic waste resource treatment, provincial and ministerial, co-construction Collaborative Innovation Center Project of Chongqing University of Science and Technology (shljzyh2021-08).

Author information

Authors and Affiliations

Authors

Contributions

Huishan Cai: methodology, investigation, writing—original draft, writing—review and editing. Lin Zhang: methodology, writing—review and editing. Chengwei Zuo: writing—review and editing. Yuan Wei: writing—review and editing. Hao Wang: writing—review and editing. Zhenfu Jia: funding acquisition and supervision. Xiaodong Su: conceptualization, writing—review and editing, funding acquisition, and supervision.

Corresponding author

Correspondence to Xiaodong Su.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Zhang, L., Zuo, C. et al. One-Step Synthesis of Recyclable Ti-Doped Porous SiO2 Microspheres with Superior Structural Stability for Cationic Dye Adsorption. Water Air Soil Pollut 234, 345 (2023). https://doi.org/10.1007/s11270-023-06375-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06375-9

Keywords

Navigation