Skip to main content

Advertisement

Log in

Wastewater and Solid Waste Environmental Degradation Cost in Mohammedia City

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The world’s population growth has resulted in an increase in wastewater, waste, and leachate production, which can harm the environment and incur significant costs for society. Therefore, this study aims to estimate the cost of environmental degradation related to wastewater discharges, household waste, and leachate using the methods proposed by the World Bank for the city of Mohammedia in Morocco. Unlike previous studies that were conducted on a large scale, our study was able to provide a more in-depth and accurate analysis of the environmental costs specific to this city. The results obtained showed that the total estimated cost varies around 11.04 million euros, with 3.9 million euros generated by the degradation of the quality of water resources due to the discharge of urban wastewater and 7.1 million euros generated by the degradation due to household and similar waste and leachate. The sum of 7.1 million euros includes the cost of not covering the population by waste collection, the cost of degradation of groundwater by leachate infiltration, the loss of value of the land, the lost electricity potential, the economic gains due to recycling, and the land savings which were estimated at 0.01 million euros. In conclusion, the cost of environmental degradation is an important indicator that must be followed throughout the years to measure sustainable development planning and evaluate environmental policies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Abunama, T., Othman, F., Alslaibi, T., & Abualqumboz, M. (2017). Quantifying the generated and percolated leachate through a landfill’s lining system in Gaza Strip, Palestine. Polish Journal of Environmental Studies, 26, 2455–2461.

    Article  CAS  Google Scholar 

  • Ahmed, S. F., Mofijur, M., Nuzhat, S., et al. (2021). Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. Journal of Hazardous Materials, 416, 125912. https://doi.org/10.1016/j.jhazmat.2021.125912

    Article  CAS  Google Scholar 

  • Ali, N., Hassan Riead, M. M., Bilal, M., et al. (2021). Adsorptive remediation of environmental pollutants using magnetic hybrid materials as platform adsorbents. Chemosphere, 284, 131279. https://doi.org/10.1016/j.chemosphere.2021.131279

    Article  CAS  Google Scholar 

  • Aliyas, I. M., Al-Rawi, A. T., & Al-Dabbagh, M. (2019). Negative effect of sewage water on environment and techniques of treatment. International Journal of Applied Management Science, 5, 46–50.

    Google Scholar 

  • Alzamora, B. R., & Barros, R. T. D. V. (2020). Review of municipal waste management charging methods in different countries. Waste Management, 115, 47–55. https://doi.org/10.1016/j.wasman.2020.07.020

    Article  Google Scholar 

  • Américo-Pinheiro, J. H. P., Paschoa, C. V. M., Salomão, G. R., et al. (2022). Adsorptive remediation of naproxen from water using in-house developed hybrid material functionalized with iron oxide. Chemosphere, 289, 133222. https://doi.org/10.1016/j.chemosphere.2021.133222

    Article  CAS  Google Scholar 

  • Arabi, M., Sbaa, M., Vanclooster, M., & Darmous, A. (2020). Impact of the municipal solid waste typology on leachate flow under semi-arid climate – a case study. Journal of Ecological Engineering, 21, 94–101. https://doi.org/10.12911/22998993/123250

    Article  Google Scholar 

  • Arif, S., & Doumani, F. (2014a). Cost of environmental degradation due to solid waste management practices in the Great Rabat (Coût de la dégradation de l’environnement due aux pratiques de gestion des déchets solides dans le Grand Rabat). SWEEP-Net program financed by the GIZ, Tunis. https://www.retechgermany.net/fileadmin/retech/05_mediathek/laenderinformationen/Marokko_CASWD_MAROC.pdf

    Google Scholar 

  • Arif, S., & Doumani, F. (2014b). Cost of environmental degradation due to solid waste management practices in the Great Tunis (Coût de la dégradation de l’environnement due aux pratiques de gestion des déchets solides dans le GRAND Tunis). SWEEP-Net program financed by the GIZ, Tunis. https://www.retechgermany.net/fileadmin/retech/05_mediathek/laenderinformationen/Tunesien_CASWD_TUNISIE_frz.pdf

  • Arunbabu, V., Indu, K. S., & Ramasamy, E. V. (2017). Leachate pollution index as an effective tool in determining the phytotoxicity of municipal solid waste leachate. Waste Management, 68, 329–336. https://doi.org/10.1016/j.wasman.2017.07.012

    Article  CAS  Google Scholar 

  • Bakraouy H (2018) Treatment of leachate discharges from public landfills by physicochemical and biological means: Case of Ouled Berjal in Kenitra and Oum Azza in Rabat (Traitement des rejets de lixiviats des décharges publiques par voies physicochimique et biologique : Cas d’Ouled Berjal à Kénitra et d’Oum Azza à Rabat). Thesis report, University Hassan II of Casablanca - Faculty of Sciences and Techniques of Mohammedia

  • Bassi, S., Ten Brink, P., Farmer, A., Tucker, G., Gardner, S., Mazza, L., & Doumani, F. (2011) Benefit assessment manual for policy makers: Assessment of social and economic benefits of enhanced environmental protection in the ENPI countries. Brussels

  • Bhatia, S. K., Joo, H.-S., & Yang, Y.-H. (2018). Biowaste-to-bioenergy using biological methods – A mini-review. Energy Conversion and Management, 177, 640–660. https://doi.org/10.1016/j.enconman.2018.09.090

    Article  CAS  Google Scholar 

  • Bouhbouh, S., & Berrima, A. (2019). Biogaz valorization of Fes controlled discharge. Journal of Applied Science and Environmental Studies, 2(2), 2. https://doi.org/10.48393/IMIST.PRSM/jases-v2i2.17151

    Article  Google Scholar 

  • Bouyakhsass, R., Bouaouda, S., Taleb, A., et al. (2023). Critical review for the quantification of leachate production: Evaluation example for the “Oum Azza” public landfill in Rabat city Morocco. Environmental Quality Management. https://doi.org/10.1002/tqem.21981

  • Bragança, I., Sánchez-Soberón, F., Pantuzza, G. F., et al. (2020). Impurities in biogas: Analytical strategies, occurrence, effects and removal technologies. Biomass Bioenergy, 143, 105878. https://doi.org/10.1016/j.biombioe.2020.105878

    Article  CAS  Google Scholar 

  • Chen, D. M.-C., Bodirsky, B. L., Krueger, T., et al. (2020). The world’s growing municipal solid waste: Trends and impacts. Environmental Research Letters, 15, 074021. https://doi.org/10.1088/1748-9326/ab8659

    Article  CAS  Google Scholar 

  • Croitoru, L., & Sarraf, M. (2017). The cost of environmental degradation in Morocco (Le Coût de la Dégradation de l’Environnement au Maroc). World Bank Group.

    Google Scholar 

  • Edokpayi, J. N., Odiyo, J. O., & Durowoju, O. S. (2017). Impact of wastewater on surface water quality in developing countries: A case study of South Africa. IntechOpen.

    Google Scholar 

  • Ejaz N, Akhtar N, Nisar H, Naeem UA (2010) Environmental impacts of improper solid waste management in developing countries: A case study of Rawalpindi City. pp 379–387

  • El Bada, N., & Mountadar, M. (2012). Evaluation meso-economic-environmental management of solid waste from the city of Azemmour (Morocco), 3, 786–799.

  • El Bouenani Y, Tellal M, Fer T, et al (2021) Water scarcity mitigation in northern Morocco. . Second Int Conf « Water Megacities Glob Change » 12

  • El Maguiri, A., Idrissi, L., Kissi, B., & Souabi, S. (2016). Towards recycling and waste reduction in Mohammedia, Morocco. Proceedings of the Institution of Civil Engineers-Waste and Resource Management, 169, 101–107. https://doi.org/10.1680/jwarm.15.00005

    Article  Google Scholar 

  • El Meknassi YE (2015) Reuse of treated wastewater in agriculture; from experimentation to a Master Plan (Réutilisation des eaux usées traitées en agriculture ; de l‘expérimentation vers un Plan directeur)

  • El Messaoudi, N., El Khomri, M., Fernine, Y., et al. (2022). Hydrothermally engineered Eriobotrya japonica leaves/MgO nanocomposites with potential applications in wastewater treatment. Groundwater for Sustainable Development, 16, 100728. https://doi.org/10.1016/j.gsd.2022.100728

    Article  Google Scholar 

  • El Ouahidi, A., Hafid, A., Nakhcha, C., et al. (2017). Impact des rejets pollués sur la qualité des réserves hydriques souterraines dans la commune de “Sebt Gzoula” (Province de Safi - Maroc). Revue Marocaine de Géomorphologie, 1, 1–15.

    Google Scholar 

  • Elhamdouni, D., Arioua, A., Karaoui, I., et al. (2019). Household solid waste sustainable management in the Khenifra region, Morocco. Arabian Journal of Geosciences, 12, 744. https://doi.org/10.1007/s12517-019-4960-5

    Article  Google Scholar 

  • Ghinea, C., & Gavrilescu, M. (2016). Costs analysis of municipal solid waste management scenarios: IASI – Romania case study. Journal of Environmental Engineering and Landscape Management, 24, 185–199. https://doi.org/10.3846/16486897.2016.1173041

    Article  Google Scholar 

  • Hafidi M (2015) L’impact et la gestion des déchets solides (Région Marrakech-Safi)

  • HCP. (2014). General Census of Population and Housing (Recensement général de la population et de l’habitat). High Commission for Planning.

    Google Scholar 

  • HCP (2020) Monograph of the Casablanca Settat region (Monographie de la région Casablanca Settat). Regional Direction of Casablanca-Settat

  • Jones, E. R., van Vliet, M. T. H., Qadir, M., & Bierkens, M. F. P. (2021). Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth System Science Data, 13, 237–254. https://doi.org/10.5194/essd-13-237-2021

    Article  Google Scholar 

  • Koul, B., Sharma, K., & Shah, M. P. (2022). Phycoremediation: A sustainable alternative in wastewater treatment (WWT) regime. Environmental Technology and Innovation, 25, 102040. https://doi.org/10.1016/j.eti.2021.102040

    Article  CAS  Google Scholar 

  • MdEau (2016) Etat de la qualité des ressources en eau au Maroc (année 2014–2015). Ministère Délégué auprès du Ministère de l’Energie, de l’Eau et de l’Environnement, Chargé de l’Eau

  • Mishra, S., Tiwary, D., Ohri, A., & Agnihotri, A. K. (2019). Impact of municipal solid waste landfill leachate on groundwater quality in Varanasi, India. Groundwater for Sustainable Development, 9, 100230. https://doi.org/10.1016/j.gsd.2019.100230

    Article  Google Scholar 

  • Mohyudin, S., Farooq, R., Jubeen, F., et al. (2022). Microbial fuel cells a state-of-the-art technology for wastewater treatment and bioelectricity generation. Environmental Research, 204, 112387. https://doi.org/10.1016/j.envres.2021.112387

    Article  CAS  Google Scholar 

  • Naimi, Y., Saghir, M., Cherqaoui, A., & Chatre, B. (2017). Energetic recovery of biomass in the region of Rabat, Morocco. International Journal of Hydrogen Energy, 42, 1396–1402. https://doi.org/10.1016/j.ijhydene.2016.07.055

    Article  CAS  Google Scholar 

  • Nancharaiah, Y. V., & Sarvajith, M. (2019). Aerobic granular sludge process: A fast growing biological treatment for sustainable wastewater treatment. Current Opinion in Environmental Science & Health, 12, 57–65. https://doi.org/10.1016/j.coesh.2019.09.011

    Article  Google Scholar 

  • Naushad, M., Alqadami, A. A., AlOthman, Z. A., et al. (2019). Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. Journal of Molecular Liquids, 293, 111442. https://doi.org/10.1016/j.molliq.2019.111442

    Article  CAS  Google Scholar 

  • Nelson, J. P. (1978). Residential choice, hedonic prices, and the demand for urban air quality. Journal of Urban Economics, 5, 357–369. https://doi.org/10.1016/0094-1190(78)90016-5

    Article  Google Scholar 

  • Nikkhah, A., Khojastehpour, M., & Abbaspour-Fard, M. H. (2018). Hybrid landfill gas emissions modeling and life cycle assessment for determining the appropriate period to install biogas system. Journal of Cleaner Production, 185, 772–780. https://doi.org/10.1016/j.jclepro.2018.03.080

    Article  CAS  Google Scholar 

  • Obotey Ezugbe, E., & Rathilal, S. (2020). Membrane technologies in wastewater treatment: A review. Membranes, 10, 89. https://doi.org/10.3390/membranes10050089

    Article  CAS  Google Scholar 

  • Othmani, A., Kadier, A., Singh, R., et al. (2022). A comprehensive review on green perspectives of electrocoagulation integrated with advanced processes for effective pollutants removal from water environment. Environmental Research, 215, 114294. https://doi.org/10.1016/j.envres.2022.114294

    Article  CAS  Google Scholar 

  • Rajoo, K. S., Karam, D. S., Ismail, A., & Arifin, A. (2020). Evaluating the leachate contamination impact of landfills and open dumpsites from developing countries using the proposed Leachate Pollution Index for Developing Countries (LPIDC). Environmental Nanotechnology, Monitoring and Management, 14, 100372. https://doi.org/10.1016/j.enmm.2020.100372

    Article  Google Scholar 

  • Rasheed, T., Kausar, F., Rizwan, K., et al. (2022). Two dimensional MXenes as emerging paradigm for adsorptive removal of toxic metallic pollutants from wastewater. Chemosphere, 287, 132319. https://doi.org/10.1016/j.chemosphere.2021.132319

    Article  CAS  Google Scholar 

  • Rashtbari, Y., Sher, F., Afshin, S., et al. (2022). Green synthesis of zero-valent iron nanoparticles and loading effect on activated carbon for furfural adsorption. Chemosphere, 287, 132114. https://doi.org/10.1016/j.chemosphere.2021.132114

    Article  CAS  Google Scholar 

  • Rezapour, S., Samadi, A., Kalavrouziotis, I. K., & Ghaemian, N. (2018). Impact of the uncontrolled leakage of leachate from a municipal solid waste landfill on soil in a cultivated-calcareous environment. Waste Management, 82, 51–61. https://doi.org/10.1016/j.wasman.2018.10.013

    Article  CAS  Google Scholar 

  • Sadaf, S., Singh, A. K., Iqbal, J., et al. (2022). Advancements of sequencing batch biofilm reactor for slaughterhouse wastewater assisted with response surface methodology. Chemosphere, 307, 135952. https://doi.org/10.1016/j.chemosphere.2022.135952

    Article  CAS  Google Scholar 

  • Saghir, M., Youssef, N., & Tahiri, M. (2018). First-order mathematical modeling of biogas production: Application for the controlled landfill of fez. 2018 Renewable Energies, Power Systems & Green Inclusive Economy (REPS-GIE), 2, 1–6.

    Google Scholar 

  • Sarraf, M., Belhaj, M., & Jorio, A. (2003). Evaluation du cout de la dégradation de l’environnement. Washington D.C.

    Google Scholar 

  • SEDD (2019) Stratégie nationale de réduction et de valorisation des déchets. Secrétariat d’Etat auprès du Ministre de l’Energie, des Mines et du Développement Durable, chargé du développement durable. Summary report. p 20. Available at: https://www.environnement.gov.ma/images/Programmes-et-Projets/Strat%C3%A9gie_Nationale_de_R%C3%A9duction_et_de_Valorisation_des_D%C3%A9chets_compressed.pdf

  • Sharma, A., Ganguly, R., & Kumar Gupta, A. (2020). Impact assessment of leachate pollution potential on groundwater: An indexing method. Journal of Environmental Engineering, 146, 05019007. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001647

    Article  CAS  Google Scholar 

  • Sher, F., Iqbal, S. Z., Rasheed, T., et al. (2021). Coupling of electrocoagulation and powder activated carbon for the treatment of sustainable wastewater. Environmental Science and Pollution Research, 28, 48505–48516. https://doi.org/10.1007/s11356-021-14129-5

    Article  CAS  Google Scholar 

  • Thonart P, Diabate SI, Hiligsmann S, Lardinois M (2006) Guide pratique sur la gestion des déchets ménagers et des sites d’enfouissement technique dans les pays du Sud. Institut de l’Energie et de l’Environnement de la Francophonie (IEPF)

  • United Nations, Department of Economic and Social Affairs, Population Division (2019) World population prospects: Highlights

  • Vaverková, M. D., Adamcová, D., Zloch, J., et al. (2018). Impact of municipal solid waste landfill on environment – A case study. Journal of Ecological Engineering, 19, 55–68. https://doi.org/10.12911/22998993/89664

    Article  Google Scholar 

  • Vinti, G., Bauza, V., Clasen, T., et al. (2021). Municipal solid waste management and adverse health outcomes: A systematic review. International Journal of Environmental Research and Public Health, 18, 4331. https://doi.org/10.3390/ijerph18084331

    Article  Google Scholar 

  • Wichelns, D., Drechsel, P., & Qadir, M. (2015). Wastewater: Economic asset in an urbanizing world. In P. Drechsel, M. Qadir, & D. Wichelns (Eds.), Wastewater: Economic asset in an urbanizing world (pp. 3–14). Springer.

    Chapter  Google Scholar 

  • Xu, D., Zhou, B., & Yuan, R. (2019). Optimization of coagulation-flocculation treatment of wastewater containing Zn(II) and Cr(VI). IOP Conference Series: Earth and Environmental Science, 227, 052049. https://doi.org/10.1088/1755-1315/227/5/052049

    Article  Google Scholar 

  • Xu, Y., Xue, X., Dong, L., et al. (2018). Long-term dynamics of leachate production, leakage from hazardous waste landfill sites and the impact on groundwater quality and human health. Waste Management, 82, 156–166. https://doi.org/10.1016/j.wasman.2018.10.009

    Article  CAS  Google Scholar 

  • Zainal, S. F. F. S., Abdul Aziz, H., Mohd Omar, F., & Alazaiza, M. Y. D. (2021). Sludge performance in coagulation-flocculation treatment for suspended solids removal from landfill leachate using Tin (IV) chloride and Jatropha curcas. International Journal of Environmental Analytical Chemistry, 0, 1–15. https://doi.org/10.1080/03067319.2021.1931161

    Article  CAS  Google Scholar 

  • Zegzouti, Y., Aguelmous, A., Khadra, A., et al. (2020). Genotoxicity evaluation of different types of leachate treated with Aspergillus flavus using Vicia faba micronucleus. Environmental Technology and Innovation, 18, 100656. https://doi.org/10.1016/j.eti.2020.100656

    Article  Google Scholar 

Download references

Funding

We received funding support from the National Center for Scientific and Technical Research Morocco under the Research Excellence Scholarship Program (Grant number: 13UH2C2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roukaya Bouyakhsass.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouyakhsass, R., Laaouan, M., Bouaouda, S. et al. Wastewater and Solid Waste Environmental Degradation Cost in Mohammedia City. Water Air Soil Pollut 234, 344 (2023). https://doi.org/10.1007/s11270-023-06367-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06367-9

Keywords

Navigation