Skip to main content
Log in

The Effect of Silicon on Growth, Physiological, and Phytochemical Attributes of Calendula Seedlings Under Lead Stress

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Today, soil contamination with heavy metals has become one of the main problems for food safety and sustainable agriculture. Here, in order to investigate the interaction between silicon (Si) and lead (Pb), hydroponic research was conducted to study the effects of Si (0.5 and 1 mM) on calendula (Calendula officinalis L.) under the toxicity of Pb (150 and 300 µM). The results demonstrated that Pb toxicity diminished the leaf accumulation of mineral nutrients and photosynthetic pigment content, which was associated with reduced plant growth and biomass. Pb stress also raised the leaf accumulation of hydrogen peroxide, anion superoxide, and methylglyoxal and rendered oxidative stress in calendula seedlings, which enhanced malondialdehyde levels and damaged membrane lipids. According to the obtained results, the greatest effects of Pb toxicity were created at a concentration of 300 μM Pb. The addition of Si lessened the accumulation of Pb, improved the contents of chlorophyll a, b, and carotenoids, and enhanced the function of photosynthetic apparatuses in calendula seedlings under Pb stress, thereby improving plant growth and biomass. The application of Si ameliorated the oxidative stress induced by Pb toxicity by upregulating the activity of enzymes involved in the antioxidant defense system and glyoxalase systems and modulating the ascorbate–glutathione redox state. Therefore, the results verified that the external application of Si reduced Pb toxicity by reducing Pb absorption, strengthening the antioxidant defense system, and maintaining ion homeostasis and the ascorbate–glutathione redox state, which can be considered as a potential chemical strategy to improve the adaptation of Pb-stressed plants. However, in order to better understand the interactions between Pb and Si, deeper studies at the genetic and molecular levels are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Aebi, H. (1984). Catalase in Vitro. Meth Enzymol, 105, 121–126.

    Article  CAS  Google Scholar 

  • Al-aghabary, K., Zhu, Z., & Shi, Q. (2005). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27, 2101–2115.

    Article  Google Scholar 

  • Alam, P., Balawi, T. H., Altalayan, F. H., Hatamleh, A. A., Ashraf, M., & Ahmad, O. (2021). Silicon attenuates the negative effects of chromium stress in tomato plants by modifying antioxidant enzyme activities, ascorbate–glutathione cycle and glyoxalase system. Acta Physiologiae Plantarum, 43, 110.

    Article  CAS  Google Scholar 

  • Albuquerque, G. D. P., Batista, B. L., de Souza, A. L. M., de Araújo Brito, A. E., Nascimento, V. R., de Oliveira Neto, C. F., de Paiva, A. P., Teixeira, J. S. S., & da Silva Júnior, M. L. (2020). The effect of silicon (Si) on the growth and nutritional status of Schizolobium amazonicum seedlings subjected to zinc toxicity. Australian Journal of Crop Science, 14(02), 325–332.

    Article  CAS  Google Scholar 

  • Ali, S., Farooq, M. A., Yasmeen, T., Hussain, S., Arif, M. S., Abbas, F., Bharwana, S. A., & Zhang, G. P. (2013). The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress. Ecotoxicology and Environmental Safety, 89, 66–72.

    Article  CAS  Google Scholar 

  • Ali, B., Xu, X., Gill, R. A., Yang, S., Ali, S., Tahir, M., & Zhou, W. (2014). Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Industrial Crops and Products, 52, 617–626.

    Article  CAS  Google Scholar 

  • Arora, D., Rani, A., & Sharma, A. (2013). A review on phytochemistry and ethnopharmacological aspects of genus Calendula. Pharmacognosy Reviews, 7(14), 179–187.

    Article  Google Scholar 

  • Ashraf, U., Hussain, S., Anjum, S. A., Abbas, F., Tanveer, M., Noor, M. A., & Tang, X. (2017). Alterations in growth, oxidative damage, and metal uptake of five aromatic rice cultivars under lead toxicity. Plant Physiology and Biochemistry, 115, 461–471.

    Article  CAS  Google Scholar 

  • Azam, S. K., Karimi, N., Souri, Z., & Vaculík, M. (2021). Multiple effects of silicon on alleviation of arsenic and cadmium toxicity in hyperaccumulator Isatis cappadocica Desv. Plant Physiology and Biochemistry, 168, 177–187.

    Article  CAS  Google Scholar 

  • Bali, S., Kaur, P., Kohli, S. K., Ohri, P., Thukral, A. K., Bhardwaj, R., Wijaya, L., Alyemeni, M. N., & Ahmad, P. (2018). Jasmonic acid induced changes in physio-biochemical attributes and ascorbate-glutathione pathway in Lycopersicon esculentum under lead stress at different growth stages. Science of the Total Environment, 645, 1344–1360.

    Article  CAS  Google Scholar 

  • Behroozi, Z., Rahimi, B., Hamblin, M. R., Nasirinezhad, F., Janzadeh, A., & Ramezani, F. (2022). Injection of cerium oxide nanoparticles to treat spinal cord injury in rats. Journal of Neuropathology & Experimental Neurology, 81(8), 635–642.

    Article  CAS  Google Scholar 

  • Bharwana, S. A., Ali, S., Farooq, M. A., Iqbal, N., Abbas, F., & Ahmad, M. S. A. (2013). Alleviation of lead toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. J Bioremed Biodeg, 4, 187.

    Google Scholar 

  • Boorboori, M. R., Li, Z., Yan, X., Dan, M., Zhang, Z., Lin, W., & Fang, C. (2021). Comparison of silicon-evoked responses on arsenic stress between different Dular rice genotypes. Plants (basel)., 10(10), 2210.

    Article  CAS  Google Scholar 

  • Dhindsa, R. S., Plumb-Dhindsa, P., & Thorpe, T. A. (1981). Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32, 93–10.

    Article  CAS  Google Scholar 

  • Dragišić Maksimović, J., Mojović, M., Maksimović, V., Römheld, V., & Nikolic, M. (2012). Silicon ameliorates manganese toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast. Journal of Experimental Botany, 63(7), 2411–2420.

    Article  Google Scholar 

  • Dutilleul, C., Driscoll, S., Cornic, G., De Paepe, R., Foyer, C. H., & Noctor, G. (2003). Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients. Plant Physiology, 131(1), 264–275.

    Article  CAS  Google Scholar 

  • El-Shora, H. M., Massoud, G. F., El-Sherbeny, G. A., Alrdahe, S. S., & Darwish, D. B. (2021). Alleviation of lead stress on sage plant by 5-aminolevulinic acid (ALA). Plants, 10(9), 1969.

    Article  CAS  Google Scholar 

  • Elstner, E. F., & Heupel, A. (1976). Inhibition of nitrite formation from hydroxylammoniumchloride: A simple assay for superoxide dismutase. Analytical Biochemistry, 70, 616–620.

    Article  CAS  Google Scholar 

  • Emamverdian, A., Ding, Y., Barker, J., Mokhberdoran, F., Ramakrishnan, M., Liu, G., & Li, Y. (2021). Nitric oxide ameliorates plant metal toxicity by increasing antioxidant capacity and reducing Pb and Cd translocation. Antioxidants, 10, 1981.

    Article  CAS  Google Scholar 

  • Emamverdian, A., Hasanuzzaman, M., Ding, Y., Barker, J., Mokhberdoran, F., & Liu, G. (2022). Zinc oxide nanoparticles improve pleioblastus pygmaeus plant tolerance to arsenic and mercury by stimulating antioxidant defense and reducing the metal accumulation and translocation. Frontiers in Plant Science, 13, 841501.

    Article  Google Scholar 

  • Emamverdian, A., Ding, Y., Barker, J., Liu, G., Li, Y., & Mokhberdoran, F. (2023). Sodium nitroprusside improves bamboo resistance under Mn and Cr toxicity with stimulation of antioxidants activity, relative water content, and metal translocation and accumulation. International Journal of Molecular Sciences, 24, 1942.

    Article  CAS  Google Scholar 

  • Farooq, M. A., Ali, S., Hameed, A., Ishaque, W., Mahmood, K., & Iqbal, Z. (2013). Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicology and Environmental Safety, 96, 242–249.

    Article  CAS  Google Scholar 

  • Fauteux, F., Rémus-borel, W., Menzies, J. G., & Bélanger, R. R. (2005). Silicon and plant disease resistance against pathogenic fungi. Micro Lett, 249, 1–6.

    Article  CAS  Google Scholar 

  • Foyer, C. H., & Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 133, 21–25.

    Article  CAS  Google Scholar 

  • Fryova, R., Pohanka, M., Martinkova, P., Cihlarova, H., Brtnicky, M., Hladky, J., & Kynicky, J. (2018). Oxidative stress and heavy metals in plants. Reviews of Environmental Contamination and Toxicology, 245, 129–156.

    Google Scholar 

  • Ge, D., Yuan, H., Xiao, J. & Zhu, N. (2019). Insight into the enhanced sludge dewaterability by tannic acid conditioning and pH regulation. Science of the Total Environment, 679, 298–306.

  • Geng, A., Wang, X., Wu, L., Wang, F., Wu, Z., Yang, H., Chen, Y., Wen, D., & Liu, X. (2018). Silicon improves growth and alleviates oxidative stress in rice seedlings (Oryza sativa L.) by strengthening antioxidant defense and enhancing protein metabolism under arsanilic acid exposure. Ecotoxicology and Environmental Safety, 158, 266–273.

    Article  CAS  Google Scholar 

  • Ghasemi-Omran, V. O., Ghorbani, A., & Sajjadi-Otaghsara, S. A. (2021). Melatonin alleviates NaCl-induced damage by regulating ionic homeostasis, antioxidant system, redox homeostasis, and expression of steviol glycosides-related biosynthetic genes in in vitro cultured Stevia rebaudiana Bertoni. In Vitro Cell Development Biological Plant, 57, 319–331.

    Article  CAS  Google Scholar 

  • Ghorbani, A., Tafteh, M., Roudbari, N., Pishkar, L., Zhang, W., & Wu, C. (2020). Piriformospora indica augments arsenic tolerance in rice (Oryza sativa) by immobilizing arsenic in roots and improving iron translocation to shoots. Ecotoxicology and Environmental Safety, 209, 111793.

    Article  Google Scholar 

  • Ghorbani, A., Pishkar, L., Roodbari, N., Pehlivan, N., & Wu, C. (2021). Nitric oxide could allay arsenic phytotoxicity in tomato (Solanum lycopersicum L.) by modulating photosynthetic pigments, phytochelatin metabolism, molecular redox status and arsenic sequestration. Plant Physiology and Biochemistry, 167, 337–348.

    Article  CAS  Google Scholar 

  • Ghorbani, A., Ghasemi-Omran, V. O., & Chen, M. (2023). The effect of glycine betaine on nitrogen and polyamine metabolisms, expression of glycoside-related biosynthetic enzymes, and K/Na balance of stevia under salt stress. Plants, 12, 1628.

    Article  CAS  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

    Article  CAS  Google Scholar 

  • Gill, R. A., Ali, B., Islam, F., Farooq, M. A., Gill, M. B., Mwamba, T. M., & Zhou, W. (2015). Physiological and molecular analyses of black and yellow seeded Brassica napus regulated by 5-aminolivulinic acid under chromium stress. Plant Physiology and Biochemistry, 94, 130–143.

    Article  CAS  Google Scholar 

  • Hasanuzzaman, M., Hossain, M. A., & Fujita, M. (2012). Exogenous selenium pretreatment protects rapeseed from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biological Trace Element Research, 149, 248–261.

    Article  CAS  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R. & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643–9684.

  • Hasanuzzaman, M., Nahar, K., Anee, T. I., & Fujita, M. (2017). Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L by modulating AsA-GSH pathway and glyoxalase system. Front Plant Sci, 8, 1061.

    Article  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Hossain, M. S., Mahmud, J. A., Rahman, A., Inafuku, M., Oku, H., & Fujita, M. (2017b). Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. International Journal of Molecular Sciences, 18(1), 200.

    Article  Google Scholar 

  • Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants (basel), 9(8), 681.

    Article  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  Google Scholar 

  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circ Calif Agric Exp Stn, 347, 32.

    Google Scholar 

  • Hossain, M. A., Piyatida, P., da Silva, J. A. T., & Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 2012, 872875.

    Article  Google Scholar 

  • Hosseini, S. A., Naseri Rad, S., Ali, N., & Yvin, J. C. (2019). The ameliorative effect of silicon on maize plants grown in mg-deficient conditions. International Journal of Molecular Sciences, 20(4), 969.

    Article  CAS  Google Scholar 

  • Jahandideh, A., Noori, H., Rahimi, B., Hamblin, M. R., Behroozi, Z., Ramezani, M., & Ramezani, F. (2022). Alginate scaffolds improve functional recovery after spinal cord injury. European Journal of Trauma and Emergency Surgery, 48, 1711–1721.

    Article  Google Scholar 

  • Jiang, Y., Yang, R., Qu, Z., Hou, G., Cong, W., Wang, C., & Zhao, F. (2022). Valeriaquinone A, a unique anthraquinone–coumarin hybrid with selective inhibition of PTP1B from Knoxia valerianoides. Chinese Chemical Letters, 33(6), 2919–2922.

    Article  CAS  Google Scholar 

  • Kabir, A. H., Hossain, M. M., Khatun, M. A., Mandal, A., & Haider, S. A. (2016). role of silicon counteracting cadmium toxicity in alfalfa (Medicago sativa L). Front Plant Sci, 7, 1117.

    Article  Google Scholar 

  • Kaya, C., Ashraf, M., Al-Huqail, A. A., Alqahtani, M. A., & Ahmad, P. (2020). Silicon is dependent on hydrogen sulphide to improve boron toxicity tolerance in pepper plants by regulating the AsA-GSH cycle and glyoxalase system. Chemosphere, 257, 127241.

    Article  CAS  Google Scholar 

  • Kim, Y. H., Khan, A. L., Kim, D. H., Lee, S. Y., Kim, K. M., Waqas, M., Jung, H. Y., Shin, J. H., Kim, J. G., & Lee, I. J. (2014). Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biology, 14, 13.

    Article  Google Scholar 

  • Lamhamdi, M., El Galiou, O., Bakrim, A., Nóvoa-Muñoz, J. C., Arias-Estévez, M., Aarab, A., & Lafont, R. (2013). Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings. Saudi J Biol Sci, 20(1), 29–36.

    Article  CAS  Google Scholar 

  • Li, L., Zheng, C., Fu, Y., Wu, D., Yang, X., & Shen, H. (2012). Silicate-mediated alleviation of Pb toxicity in banana grown in Pb-contaminated soil. Biological Trace Element Research, 145, 101–108.

    Article  CAS  Google Scholar 

  • Li, W., Shi, Y., Zhu, D., Wang, W., Liu, H., Li, J., Shi, N., Ma, L. & Fu, S. (2021). Fine root biomass and morphology in a temperate forest are influenced more by the nitrogen treatment approach than the rate. Ecological Indicators, 130, 108031.

  • Li, J., Charles, L. S., Yang, Z., Du, G. & Fu, S. (2022). Differential mechanisms drive species loss under artificial shade and fertilization in the alpine meadow of the Tibetan plateau. Frontiers in Plant Science, 13, 832473.

  • Li, T., Yu, X., Li, M., Rong, L., Xiao, X. & Zou, X. (2023). Ecological insight into antibiotic resistome of ion-adsorption rare earth mining soils from south China by metagenomic analysis. Science of the Total Environment, 872, 162265.

  • Liang, Y. C., Sun, W. C., Zhu, Y. G., & Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environ Pollu, 147, 422–428.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K., & Wellburn, A. R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 11, 591–592.

    Article  Google Scholar 

  • Lou, L., Kang, J., Pang, H., Li, Q., Du, X., Wu, W., Chen, J., & Lv, J. (2017). Sulfur protects pakchoi (Brassica chinensis L.) seedlings against cadmium stress by regulating ascorbate-glutathione metabolism. Int J Mol Sci, 18, 1628.

    Article  Google Scholar 

  • Lu, Y., Ma, J., Teng, Y., He, J., Christie, P., Zhu, L., Ren, W., Zhang, M., & Deng, S. (2018). Effects of silicon on the growth, physiology and cadmium translocation of tobacco (Nicotiana tabacum L.) in cadmium contaminated soil. Pedosphere, 28(4), 680–689.

    Article  CAS  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  • Namdjoyan, S., Soorki, A. A., Elyasi, N., Kazemi, N., & Simaei, M. (2020). Melatonin alleviates lead-induced oxidative damage in safflower (Carthamus tinctorius L.) seedlings. Ecotoxicology, 29(1), 108–118.

    Article  CAS  Google Scholar 

  • Navabpour, S., Yamchi, A., Bagherikia, S., & Kafi, H. (2020). Lead-induced oxidative stress and role of antioxidant defense in wheat (Triticum aestivum L.). Physiol Mol Biol Plants., 26(4), 793–802.

    Article  CAS  Google Scholar 

  • Pan, C., Yang, K., Erhunmwunsee, F., Li, Y., Liu, M., Pan, S., Yang, D., Lu, G., Ma, D., & Tian, J. (2023). Inhibitory effect of cinnamaldehyde on Fusarium solani and its application in postharvest preservation of sweet potato. Food Chemistry, 408, 135213.

    Article  CAS  Google Scholar 

  • Pereira, T. S., Pereira, T. S., Souza, C. L. F. D., Lima, E. J. A., Batista, B. L., & da Silva Lobato, A. K. (2018). Silicon deposition in roots minimizes the cadmium accumulation and oxidative stress in leaves of cowpea plants. Physiol Mol Biol Plants, 24, 99–114.

    Article  CAS  Google Scholar 

  • Principato, G. B., Rosi, G., Talesa, V., Govannini, E., & Uolila, L. (1987). Purification and characterization of two forms of glyoxalase II from rat liver and brain of Wistar rats. Biochimica Et Biophysica Acta, 911, 349–355.

    Article  CAS  Google Scholar 

  • Rahimi, B., Behroozi, Z., Motamed, A., Jafarpour, M., Hamblin, M. R., Moshiri, A., Janzadeh, A., & Ramezani, F. (2023). Study of nerve cell regeneration on nanofibers containing cerium oxide nanoparticles in a spinal cord injury model in rats. Journal of Materials Science. Materials in Medicine, 34, 9.

    Article  CAS  Google Scholar 

  • Salavati, J., Fallah, H., Niknejad, Y., & Barari Tari, D. (2021). Methyl jasmonate ameliorates lead toxicity in Oryza sativa by modulating chlorophyll metabolism, antioxidative capacity and metal translocation. Physiology and Molecular Biology of Plants, 27(5), 1089–1104.

    Article  CAS  Google Scholar 

  • Sergiev, I., Academy, B., Alexieva, V., Academy, B., Yanev, S., & Academy, B. (2000). Effect of atrazine and spermine on free proline content and some antioxidants in pea (Pisum sativum L.) Plants. Biol Physiol Des Plantes, 53, 63–66.

    CAS  Google Scholar 

  • Shakoor, M. B., Ali, S., Hameed, A., Farid, M., Hussain, S., Yasmeen, T., Najeeb, U., Bharwana, S. A., & Abbasi, G. H. (2014). Citric acid improves lead (pb) phytoextraction in Brassica napus L. by mitigating pb-induced morphological and biochemical damages. Ecotoxicology and Environmental Safety, 109, 38–47.

    Article  Google Scholar 

  • Sharifi, A., Zandieh, A., Behroozi, Z., Hamblin, M. R., Mayahi, S., Yousefifard, M., & Ramezani, F. (2022). Sustained delivery of chABC improves functional recovery after a spine injury. BMC Neuroscience, 23, 60.

    Article  CAS  Google Scholar 

  • Singh, R., Tripathi, R., Dwivedi, S., Kumar, A., Trivedi, P., & Chakrabarty, D. (2010). Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresource Technology, 101, 3025–3032.

    Article  CAS  Google Scholar 

  • Su, L., Shi, W., Chen, X., Meng, L., Yuan, L., Chen, X. & Huang, G. (2021). Simultaneously and quantitatively analyze the heavy metals in Sargassum fusiforme by laser-induced breakdown spectroscopy. Food Chemistry, 338, 127797.

  • Tashakori-Miyanroudi, M., Janzadeh, A., Seifalian, A., Aboutaleb, N., Azizi, Y., & Ramezani, F. (2022). Will carbon nanotube/nanofiber bring new hope for the treatment of heart damage? A Systematic Review. Nanomedicine, 17(29), 2189–2205.

    CAS  Google Scholar 

  • Wang, L., Li, X., Gao, F., Liu, Y., Lang, S., Wang, C. & Zhang, D. (2023). Effect of ultrasound combined with exogenous GABA treatment on polyphenolic metabolites and antioxidant activity of mung bean during germination. Ultrasonics Sonochemistry, 94, 106311.

  • Wild, R., Ooi, L., Srikanth, V., & Münch, G. (2012). A quick, convenient and economical method for the reliable determination of methylglyoxal in millimolar concentrations: The N-acetyl-L-cysteine assay. Analytical and Bioanalytical Chemistry, 403, 2577–2581.

    Article  CAS  Google Scholar 

  • Xiong, H., Lu, D., Li, Z., Wu, J., Ning, X., Lin, W., Bai, Z., Zheng, C., Sun, Y., Chi, W., Zhang, L. & Xu, X. (2023). The DELLA-ABI4-HY5 module integrates light and gibberellin signals to regulate hypocotyl elongation. Plant Communities, 100597.

  • Xu, Z., Pehlivan, N., Ghorbani, A., & Wu, C. (2022). Effects of Azorhizobium caulinodans and Piriformospora indica co-inoculation on growth and fruit quality of tomato (Solanum lycopersicum L) under salt stress. Horticulturae, 8(4), 302.

    Article  Google Scholar 

  • Xu, R., Wang, Y., Sun, Y., Wang, H., Gao, Y., Li, S., Guo, L. & Gao, L. (2023). External sodium acetate improved Cr(VI) stabilization in a Cr-spiked soil during chemical-microbial reduction processes: Insights into Cr(VI) reduction performance, microbial community and metabolic functions. Ecotoxicology and Environmental Safety, 251, 114566.

  • Yan, Y., Jarvie, S., Liu, Q., & Zhang, Q. (2022). Effects of fragmentation on grassland plant diversity depend on the habitat specialization of species. Biological Conservation, 275, 109773.

  • Yang, K., Geng, Q., Luo, Y., Xie, R., Sun, T., Wang, Z., Qin, L., Zhao, W., Liu, M., Li, Y., & Tian, J. (2022). Dysfunction of FadA-cAMP signalling decreases Aspergillus flavus resistance to antimicrobial natural preservative Perillaldehyde and AFB1 biosynthesis. Environmental Microbiology, 24(3), 1590–1607.

    Article  CAS  Google Scholar 

  • Zargar, S. M., Mahajan, R., Bhat, J. A., Nazir, M., & Deshmukh, R. (2019). Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech, 9(3), 73.

    Article  Google Scholar 

  • Zhou, J., Zhang, Z., Zhang, Y., Wei, Y., & Jiang, Z. (2018). Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PLoS ONE, 13(3), e0191139.

    Article  Google Scholar 

  • Zhang, Y., Shi, Y., Gong, H., Zhao, H., Li, H., Hu, Y., & Wang, Y. (2018). Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. Journal of Integrative Agriculture, 17(10), 2151–2159.

    Article  CAS  Google Scholar 

  • Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M., & Anjum, M. Z. (2019). Lead toxicity in plants: Impacts and remediation. Journal of Environmental Management, 250, 109557.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GB and ZJ conceived the idea and wrote the manuscript. GB corrected the language of the manuscript. ZJ conducted the literature survey.

Corresponding author

Correspondence to Giti Barzin.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzin, G., Firozabadi, Z.J. The Effect of Silicon on Growth, Physiological, and Phytochemical Attributes of Calendula Seedlings Under Lead Stress. Water Air Soil Pollut 234, 323 (2023). https://doi.org/10.1007/s11270-023-06336-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06336-2

Keywords

Navigation