Skip to main content
Log in

Fabrication of Nano-bentonite-Based Organo-minerals Composites of Biochar: Characterization and Application to Remove Arsenate from Contaminated Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, date palm waste-derived biochar (BC) was modified through intercalation of nano-sized bentonite clay to fabricate organo-mineral composites. The BCs produced at 400℃ (BC4) and 600℃ (BC6) were loaded with 10% (BC4-10 and BC6-10) and 20% (BC4-20 and BC6-20) of nano-bentonite to synthesize composite materials, and then characterized using SEM, FTIR, BET, and CHNS analyzer, as well as proximate, and chemical analyses. The efficiency of the synthesized materials to remove arsenate (As(V)) from contaminated aqueous media was explored through batch-type sorption trials. The results revealed that pH 5.5 was optimum for the maximum As(V) removal. As(V) sorption data was simulated with kinetics and isotherm sorption models to understand As(V) removal process. The sorption data showed the best fitness with the pseudo-second-order kinetic model, followed by Elovich, suggesting a chemisorption mechanism. The intraparticle diffusion model predicted that apparent diffusion constant was the highest for BC6-20 (0.158 [(mg g−1 min−1)]−0.5). The As(V) sorption data was described well with Langmuir isotherm, followed by Temkin, Freundlich, and Dubinin-Radushkevich isotherm models. The maximum sorption capacity as predicted by Langmuir isotherm was the highest for BC6-20 (7.48 mg g−1), followed by BC4-20, BC6, BC6-10, BC4-10, BC4 (7.19, 6.75, 6.23, 6.20, and 5.81 mg g−1, respectively). Kinetics and isotherm modeling data as well as results of post-sorption FTIR analyses suggested that multiple mechanisms were involved in the removal of As(V) such as electrostatic interactions, chemisorption (monolayer and multilayer sorption) and intraparticle diffusion. Overall, composites of BC with 20% nano-sized bentonite removed up to 191% more As(V) from aqueous solution than pristine materials. Therefore, nano-bentonite based organo-minerals composites of BC could be used as an efficient, environment-friendly, and cheaper technology to decontaminate As(V)-contaminated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abid, M., Niazi, N. K., Bibi, I., Farooqi, A., Ok, Y. S., Kunhikrishnan, A., Ali, F., Ali, S., Igalavithana, A. D., & Arshad, M. (2016). Arsenic (V) biosorption by charred orange peel in aqueous environments. International Journal of Phytoremediation, 18(5), 442–449.

    Article  CAS  Google Scholar 

  • Ahmad, M., Usman, A. R., Lee, S. S., Kim, S. C., Joo, J. H., Yang, J. E., & Ok, Y. S. (2012). Eggshell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu2+ from aqueous solutions. Journal of Industrial and Engineering Chemistry, 18(1), 198–204.

    Article  CAS  Google Scholar 

  • Ahmad, M., Ahmad, M., Usman, A. R., Al-Faraj, A. S., Abduljabbar, A. S., & Al-Wabel, M. I. (2018a). Biochar composites with nano zerovalent iron and eggshell powder for nitrate removal from aqueous solution with coexisting chloride ions. Environmental Science and Pollution Research, 25(26), 25757–25771.

    Article  CAS  Google Scholar 

  • Ahmad, M., Ahmad, M., Usman, A. R., Al-Faraj, A. S., Abduljabbar, A., Ok, Y. S., & Al-Wabel, M. I. (2019a). Date palm waste-derived biochar composites with silica and zeolite: Synthesis, characterization and implication for carbon stability and recalcitrant potential. Environmental Geochemistry and Health, 41(4), 1687–1704.

    Article  CAS  Google Scholar 

  • Ahmad, M., Usman, A. R., Rafique, M. I., & Al-Wabel, M. I. (2019b). Engineered biochar composites with zeolite, silica, and nano-zerovalent iron for the efficient scavenging of chlortetracycline from aqueous solutions. Environmental Science and Pollution Research, 26(15), 15136–15152.

    Article  CAS  Google Scholar 

  • Ahmad, M., Akanji, M. A., Usman, A. R., Al-Farraj, A. S., Tsang, Y. F., & Al-Wabel, M. I. (2020). Turning date palm waste into carbon nanodots and nano zerovalent iron composites for excellent removal of methylthioninium chloride from water. Scientific Reports, 10(1), 1–15.

    Article  Google Scholar 

  • Ahmad, M., Moon, D. H., Vithanage, M., Koutsospyros, A., Lee, S. S., Yang, J. E., ... & Ok, Y. S. (2014). Production and use of biochar from buffalo‐weed (Ambrosia trifida L.) for trichloroethylene removal from water. Journal of Chemical Technology & Biotechnology89(1), 150–157.

  • Ahmad, M., Ahmad, M., Usman, A. R., Al-Faraj, A. S., Ok, Y. S., Hussain, Q., ... & Al-Wabel, M. I. (2018b). An efficient phosphorus scavenging from aqueous solution using magnesiothermally modified bio-calcite. Environmental Technology39(13), 1638–1649.

  • Ali, I. (2018). Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: Batch and column operations. Journal of Molecular Liquids, 271, 677–685.

    Article  CAS  Google Scholar 

  • Almaroai, Y. A., Usman, A. R., Ahmad, M., Kim, K. R., Vithanage, M., & Sik Ok, Y. (2013). Role of chelating agents on release kinetics of metals and their uptake by maize from chromated copper arsenate-contaminated soil. Environmental Technology, 34(6), 747–755.

    Article  CAS  Google Scholar 

  • Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131, 374–379.

    Article  CAS  Google Scholar 

  • Aly, H. M. (2016). Biochar and its importance in adsorption of antibiotic and heavy metals from aqueous solutions. Ecological Questions, 24, 75–78.

    Article  Google Scholar 

  • ASTM. (1981). American Society for Testing and Materials [ASTM]. 1981. C 948–81: Test Method for DryandWet Bulk Density, Water Absorption, and Apparent Porosity of Thin Sections of Glass-Fiber Reinforced Concrete. ASTM International.

  • Atugoda, T., Gunawardane, C., Ahmad, M., & Vithanage, M. (2021). Mechanistic interaction of ciprofloxacin on zeolite modified seaweed (Sargassum crassifolium) derived biochar: Kinetics, isotherm and thermodynamics. Chemosphere, 281, 130676.

    Article  CAS  Google Scholar 

  • Back, J. O., Stadlmayr, W., Jabornig, S., Winkler, F., Winkler, K., & Rupprich, M. (2018). Removal of arsenic from water with non-thermal plasma (NTP), coagulation and membrane filtration. Water, 10(10), 1385.

    Article  CAS  Google Scholar 

  • Beck, D. A., Johnson, G. R., & Spolek, G. A. (2011). Amending greenroof soil with biochar to affect runoff water quantity and quality. Environmental Pollution, 159(8–9), 2111–2118.

    Article  CAS  Google Scholar 

  • Beesley, L., Moreno-Jiménez, E., & Gomez-Eyles, J. L. (2010). Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution, 158(6), 2282–2287.

    Article  CAS  Google Scholar 

  • Bentahar, Y., Hurel, C., Draoui, K., Khairoun, S., & Marmier, N. (2016). Adsorptive properties of Moroccan clays for the removal of arsenic (V) from aqueous solution. Applied Clay Science, 119, 385–392.

    Article  CAS  Google Scholar 

  • Cataldo, D. A., Maroon, M., Schrader, L. E., & Youngs, V. L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6(1), 71–80.

    Article  CAS  Google Scholar 

  • Chaudhry, S. A., Khan, T. A., & Ali, I. (2017). Equilibrium, kinetic and thermodynamic studies of Cr (VI) adsorption from aqueous solution onto manganese oxide coated sand grain (MOCSG). Journal of Molecular Liquids, 236, 320–330.

    Article  CAS  Google Scholar 

  • Chen, S., Qin, C., Wang, T., Chen, F., Li, X., Hou, H., & Zhou, M. (2019). Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: Adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. Journal of Molecular Liquids, 285, 62–74.

    Article  CAS  Google Scholar 

  • Chen, L., Chen, X. L., Zhou, C. H., Yang, H. M., Ji, S. F., Tong, D. S., ... & Chu, M. Q. (2017). Environmental-friendly montmorillonite-biochar composites: Facile production and tunable adsorption-release of ammonium and phosphate. Journal of Cleaner Production156, 648–659.

  • Dou, G., & Goldfarb, J. L. (2017). In situ upgrading of pyrolysis biofuels by bentonite clay with simultaneous production of heterogeneous adsorbents for water treatment. Fuel, 195, 273–283.

    Article  CAS  Google Scholar 

  • Ebrahimi, R., Maleki, A., Shahmoradi, B., Daraei, H., Mahvi, A. H., Barati, A. H., & Eslami, A. (2013). Elimination of arsenic contamination from water using chemically modified wheat straw. Desalination and Water Treatment, 51(10–12), 2306–2316.

    Article  CAS  Google Scholar 

  • Elkhatib, E. A., Moharem, M. L., Saad, A. F., & Attia, F. A. (2022). Novel metal based nanocomposite for rapid and efficient removal of lead from contaminated wastewater sorption kinetics, thermodynamics and mechanisms. Scientific Reports, 12(1), 1–16.

    Article  Google Scholar 

  • Fan, X., Parker, D. J., & Smith, M. D. (2003). Adsorption kinetics of fluoride on low cost materials. Water Research, 37(20), 4929–4937.

    Article  CAS  Google Scholar 

  • Fang, Q., Chen, B., Lin, Y., & Guan, Y. (2014). Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environmental Science & Technology, 48(1), 279–288.

    Article  CAS  Google Scholar 

  • Fosso-Kankeu, E., Waanders, F. B., & Steyn, F. W. (2017). Removal of Cr (VI) and Zn (II) from an aqueous solution using an organic-inorganic composite of bentonite-biochar-hematite. Desalination and Water Treatment, 59, 144–153.

    Article  CAS  Google Scholar 

  • Gai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T., & Liu, H. (2014). Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE, 9(12), e113888.

    Article  Google Scholar 

  • Geleto, M. A., Forján, R., Arco-Lázaro, E., Covelo, E. F., Marcet, P., & Cerqueira, B. (2022). Influence of pyrolysis temperature and feedstock biomass on Cu2+, Pb2+, and Zn2+ sorption capacity of biochar. International Journal of Environmental Science and Technology, 1–10.

  • Gontijo, B., & Bittencourt, F. (2005). Arsenic: A historical review. Anais Brasileiros De Dermatologia, 80, 91–95.

    Article  Google Scholar 

  • Gottmann, P., Ouni, M., Saussenthaler, S., Roos, J., Stirm, L., Jähnert, M., ... & Schürmann, A. (2018). A computational biology approach of a genome-wide screen connected miRNAs to obesity and type 2 diabetes. Molecular metabolism11, 145–159.

  • Gunduz, O., Bakar, C., Simsek, C., Baba, A., Elci, A., Gurleyuk, H., ... & Cakir, A. (2017). The health risk associated with chronic diseases in villages with high arsenic levels in drinking water supplies. Exposure and Health9(4), 261–273.

  • Ho, Y. S., Porter, J. F., & McKay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water, Air, and Soil Pollution, 141(1), 1–33.

    Article  CAS  Google Scholar 

  • Hughes, M. F., Beck, B. D., Chen, Y., Lewis, A. S., & Thomas, D. J. (2011). Arsenic exposure and toxicology: A historical perspective. Toxicological Sciences, 123(2), 305–332.

    Article  CAS  Google Scholar 

  • Hussain, A., Yousaf, U., Rahman, C. H. U., Ahmad, J., Nawaz, M., Faried, H. N., & Ul-Haq, T. (2022). Synthesis and Application of Modified Orchard Waste Biochar for Efficient Scavenging of Copper from Aqueous Solutions. Arabian Journal for Science and Engineering, 47(1), 333–345.

    Article  CAS  Google Scholar 

  • Inyang, M., Gao, B., Pullammanappallil, P., Ding, W., & Zimmerman, A. R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology, 101(22), 8868–8872.

    Article  CAS  Google Scholar 

  • Ismadji, S., Tong, D. S., Soetaredjo, F. E., Ayucitra, A., Yu, W. H., & Zhou, C. H. (2016). Bentonite hydrochar composite for removal of ammonium from Koi fish tank. Applied Clay Science, 119, 146–154.

    Article  CAS  Google Scholar 

  • Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., ... & Amonette, J. E. (2010). An investigation into the reactions of biochar in soil. Soil Research48(7), 501–515.

  • Keerthanan, S., Bhatnagar, A., Mahatantila, K., Jayasinghe, C., Ok, Y. S., & Vithanage, M. (2020). Engineered tea-waste biochar for the removal of caffeine, a model compound in pharmaceuticals and personal care products (PPCPs), from aqueous media. Environmental Technology & Innovation, 19, 100847.

    Article  Google Scholar 

  • Kookana, R. S., Sarmah, A. K., Van Zwieten, L., Krull, E., & Singh, B. (2011). Biochar application to soil: Agronomic and environmental benefits and unintended consequences. Advances in Agronomy, 112, 103–143.

    Article  CAS  Google Scholar 

  • Krishnaraj, R. (2015). Control of pollution emitted by foundries. Environmental Chemistry Letters, 13(2), 149–156.

    Article  CAS  Google Scholar 

  • Lata, S., & Samadder, S. R. (2016). Removal of arsenic from water using nano adsorbents and challenges: A review. Journal of Environmental Management, 166, 387–406.

    Article  CAS  Google Scholar 

  • Lin, Y. C., Ho, S. H., Zhou, Y., & Ren, N. Q. (2018). Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature. Bioresource Technology, 259, 104–110.

    Article  Google Scholar 

  • Lopez-Ramon, M. V., Stoeckli, F., Moreno-Castilla, C., & Carrasco-Marin, F. (1999). On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon, 37(8), 1215–1221.

    Article  CAS  Google Scholar 

  • Luo, W., Lu, Y., Wang, G., Shi, Y., Wang, T., & Giesy, J. P. (2008). Distribution and availability of arsenic in soils from the industrialized urban area of Beijing. China. Chemosphere, 72(5), 797–802.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pittman, C. U., Jr. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials, 142(1–2), 1–53.

    Article  CAS  Google Scholar 

  • Mohan, D., Rajput, S., Singh, V. K., Steele, P. H., & Pittman, C. U., Jr. (2011). Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. Journal of Hazardous Materials, 188(1–3), 319–333.

    Article  CAS  Google Scholar 

  • Mukherjee, A., Zimmerman, A. R., & Harris, W. (2011). Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 163(3–4), 247–255.

    Article  CAS  Google Scholar 

  • Nelson, D. A., Sommers, L. (1983). Total carbon organic carbon, and organic matter. Methods of Soil Analysis Part 2 Chemical and Microbiological Properties, 9, 539–579

  • Niazi, N. K., Singh, B., Van Zwieten, L., & Kachenko, A. G. (2012). Phytoremediation of an arsenic-contaminated site using Pteris vittata L and Pityrogramma calomelanos var austroamericana: a long-term study. Environmental Science and Pollution Research, 19(8), 3506–3515.

    Article  CAS  Google Scholar 

  • Niazi, N. K., Bibi, I., Shahid, M., Ok, Y. S., Burton, E. D., Wang, H., ... & Lüttge, A. (2018). Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: an integrated spectroscopic and microscopic examination. Environmental Pollution232, 31–41.

  • Özçimen, D., & Ersoy-Meriçboyu, A. (2010). Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renewable Energy, 35(6), 1319–1324.

    Article  Google Scholar 

  • Pezoti, O., Jr., Cazetta, A. L., Souza, I. P., Bedin, K. C., Martins, A. C., Silva, T. L., & Almeida, V. C. (2014). Adsorption studies of methylene blue onto ZnCl2-activated carbon produced from buriti shells (Mauritia flexuosa L). Journal of Industrial and Engineering Chemistry, 20(6), 4401–4407.

    Article  CAS  Google Scholar 

  • Plazinski, W., Rudzinski, W., & Plazinska, A. (2009). Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Advances in Colloid and Interface Science, 152(1–2), 2–13.

    Article  CAS  Google Scholar 

  • Premarathna, K. S. D., Rajapaksha, A. U., Adassoriya, N., Sarkar, B., Sirimuthu, N. M., Cooray, A., ... & Vithanage, M. (2019). Clay-biochar composites for sorptive removal of tetracycline antibiotic in aqueous media. Journal of Environmental Management238, 315–322.

  • Ramola, S., Belwal, T., Li, C. J., Wang, Y. Y., Lu, H. H., Yang, S. M., & Zhou, C. H. (2020). Improved lead removal from aqueous solution using novel porous bentonite-and calcite-biochar composite. Science of the Total Environment, 709, 136171

  • Rasheed, H., Slack, R., & Kay, P. (2016). Human health risk assessment for arsenic: A critical review. Critical Reviews in Environmental Science and Technology, 46(19–20), 1529–1583.

    Article  CAS  Google Scholar 

  • Reddy, D. H. K., & Lee, S. M. (2014). Magnetic biochar composite: Facile synthesis, characterization, and application for heavy metal removal. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 454, 96–103.

    Article  Google Scholar 

  • Richard, L. A. (1954). Diagnosis and improvement of saline and Alkali soils agric Handbook 60. USDA and IBH PUB. Coy Ltd, 78(2), 154.

    Google Scholar 

  • Saint-Jacques, N., Parker, L., Brown, P., & Dummer, T. J. (2014). Arsenic in drinking water and urinary tract cancers: A systematic review of 30 years of epidemiological evidence. Environmental Health, 13(1), 1–32.

    Article  Google Scholar 

  • Schreiter, I. J., Schmidt, W., & Schüth, C. (2018). Sorption mechanisms of chlorinated hydrocarbons on biochar produced from different feedstocks: Conclusions from single-and bi-solute experiments. Chemosphere, 203, 34–43.

    Article  CAS  Google Scholar 

  • Shaaban, A., Se, S. M., Dimin, M. F., Juoi, J. M., Husin, M. H. M., & Mitan, N. M. M. (2014). Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. Journal of Analytical and Applied Pyrolysis, 107, 31–39.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Niazi, N. K., Hassan, N. E., Bibi, I., Wang, H., Tsang, D. C., ... & Rinklebe, J. (2019). Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. International Materials Reviews64(4), 216–247.

  • Shahid, M., Rafiq, M., Niazi, N. K., Dumat, C., Shamshad, S., Khalid, S., & Bibi, I. (2017). Arsenic accumulation and physiological attributes of spinach in the presence of amendments: An implication to reduce health risk. Environmental Science and Pollution Research, 24(19), 16097–16106.

    Article  CAS  Google Scholar 

  • Shakoor, M. B., Niazi, N. K., Bibi, I., Shahid, M., Saqib, Z. A., Nawaz, M. F., ... & Rinklebe, J. (2019). Exploring the arsenic removal potential of various biosorbents from water. Environment International123, 567–579.

  • Sidhu, J. P., Ahmed, W., Gernjak, W., Aryal, R., McCarthy, D., Palmer, A., ... & Toze, S. (2013). Sewage pollution in urban stormwater runoff as evident from the widespread presence of multiple microbial and chemical source tracking markers. Science of the Total Environment463, 488–496.

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    Article  CAS  Google Scholar 

  • Soltanpour, P. N., & Schwab, A. P. (1977). A new soil test for simultaneous extraction of macro -and micro- nutrients in alkaline soils. Communication in Soil Sciences and Plant Analysis, 8, 195–207.

    Article  CAS  Google Scholar 

  • Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., ... & Yang, L. (2014). Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal240, 574–578.

  • Tang, D., Zheng, Z., Lin, K., Luan, J., & Zhang, J. (2007). Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber. Journal of Hazardous Materials, 143(1–2), 49–56.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Bannon, D. I., & Wartelle, L. H. (2012). Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil. Journal of Agricultural and Food Chemistry, 60(7), 1798–1809.

    Article  CAS  Google Scholar 

  • Usman, A. R., Abduljabbar, A., Vithanage, M., Ok, Y. S., Ahmad, M., Ahmad, M., ... & Al-Wabel, M. I. (2015). Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. Journal of Analytical and Applied Pyrolysis115, 392–400.

  • Wang, S., Gao, B., Li, Y., Zimmerman, A. R., & Cao, X. (2016). Sorption of arsenic onto Ni/Fe layered double hydroxide (LDH)-biochar composites. Rsc Advances, 6(22), 17792–17799.

    Article  CAS  Google Scholar 

  • Wolf, B. (1982). A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Communications in Soil Science and Plant Analysis, 13(12), 1035–1059.

    Article  CAS  Google Scholar 

  • Wong, Y. C., Szeto, Y. S., Cheung, W. H., & McKay, G. (2004). Pseudo-first-order kinetic studies of the sorption of acid dyes onto chitosan. Journal of Applied Polymer Science, 92(3), 1633–1645.

    Article  CAS  Google Scholar 

  • World Health Organization (WHO). (2008). Guidelines for drinking-water quality: Second addendum (Vol. 1). World Health Organization.

    Google Scholar 

  • Xu, X., Cao, X., & Zhao, L. (2013). Comparison of rice husk-and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars. Chemosphere, 92(8), 955–961.

    Article  CAS  Google Scholar 

  • Xu, Y., Jin, J., Li, X., Song, C., Meng, H., & Zhang, X. (2016). Adsorption behavior of methylene blue on Fe3O4-embedded hybrid magnetic metal–organic framework. Desalination and Water Treatment, 57(52), 25216–25225.

    Article  CAS  Google Scholar 

  • Xu, X., Huang, H., Zhang, Y., Xu, Z., & Cao, X. (2019). Biochar as both electron donor and electron shuttle for the reduction transformation of Cr (VI) during its sorption. Environmental Pollution, 244, 423–430.

    Article  CAS  Google Scholar 

  • Yao, Y., Gao, B., Chen, J., & Yang, L. (2013). Engineered biochar reclaiming phosphate from aqueous solutions: Mechanisms and potential application as a slow-release fertilizer. Environmental Science & Technology, 47(15), 8700–8708.

    Article  CAS  Google Scholar 

  • Yao, Y., Gao, B., Fang, J., Zhang, M., Chen, H., Zhou, Y., ... & Yang, L. (2014). Characterization and environmental applications of clay–biochar composites. Chemical Engineering Journal242, 136–143.

  • Zhang, J., Liu, J., & Liu, R. (2015). Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresource Technology, 176, 288–291.

    Article  CAS  Google Scholar 

  • Zhou, Q., Li, Z., Shuang, C., Li, A., Zhang, M., & Wang, M. (2012). Efficient removal of tetracycline by reusable magnetic microspheres with a high surface area. Chemical Engineering Journal, 210, 350–356.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project no. (IFKSURG-2-795).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munir Ahmad.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, J., Al-Farraj, A.S., Ahmad, M. et al. Fabrication of Nano-bentonite-Based Organo-minerals Composites of Biochar: Characterization and Application to Remove Arsenate from Contaminated Water. Water Air Soil Pollut 234, 302 (2023). https://doi.org/10.1007/s11270-023-06312-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06312-w

Keywords

Navigation