Skip to main content

Advertisement

Log in

Green Synthesized Cerium Oxide Nanoparticles as Efficient Adsorbent for Removal of Fluoride Ion from Aqueous Solution

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The preparation of cerium oxide nanoparticles from seed extract of Litchi chinensis was synthesized by a green synthesis method. Chemical and physical properties of the synthesized adsorbent were confirmed by Fourier transform infrared spectrometer (FT-IR), powder X-ray diffraction technique (PXRD), high-resolution transmission electron microscope (HR-TEM), scanning electron microscope (SEM), energy dispersive spectrum (EDS), and Raman spectrum. The batch process is used to calculate the removal efficacy of fluoride ion from the aqueous solution at different pH, temperature, contact duration, and initial fluoride concentration. The maximum removal efficiency was observed to be attained at pH 7 in one hour. The Langmuir model as well as the pseudo-second-order model provides accurate description for the adsorption isotherm and kinetics. According to HR-TEM analysis, the size of the cerium oxide nanoparticle is having 10 nm with spherical shape. The results from this study indicated the ability of cerium oxide nanoparticles prepared from Litchi chinensis, to remove fluoride in water, and had possibility to clean wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this manuscript.

References

  • Ali Khan Rao, R., Rehman, F., & Kashifuddin, M. (2012). Removal of Cr (VI) from electroplating wastewater using fruit peel of leechi (Litchi chinensis). Desalination and Water Treatment, 49(1–3), 136–146.

    Article  CAS  Google Scholar 

  • Ansari, T. M., Shaheen, S., Manzoor, S., Naz, S., & Hanif, M. A. (2020). Litchi chinensis peel biomass as green adsorbent for cadmium (Cd) ions removal from aqueous solutions. Desalination and Water Treatment, 173, 343–350.

    Article  CAS  Google Scholar 

  • Babaeivelni, K., & Khodadoust, A. P. (2013). Adsorption of fluoride onto crystalline titanium dioxide: Effect of pH, ionic strength, and co-existing ions. Journal of Colloid and Interface Science, 394, 419–427.

    Article  CAS  Google Scholar 

  • Badola, G., & Negi, D. S. (2017). Antibacterial and photocatalytic activities of silver nanoparticles synthesized by litchi chinensis leaves extract. World Journal of Pharmaceutical Research, 6(17), 755–766.

    CAS  Google Scholar 

  • Bazrafshan, E., Ownagh, K. A., & Mahvi, A. H. (2012). Application of electrocoagulation process using iron and aluminum electrodes for fluoride removal from aqueous environment. E-Journal of Chemistry, 9(4), 2297–2308.

    Article  CAS  Google Scholar 

  • Bhatnagar, A., & Minocha, A. K. (2010). Assessment of the biosorption characteristics of lychee (Litchi chinensis) peel waste for the removal of Acid Blue 25 dye from water. Environmental Technology, 31(1), 97–105.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., & Bundschuh, J. (2015). Groundwater for sustainable development-cross cutting the UN sustainable development goals. Groundwater for Sustainable Development, 1(1–2), 155–157.

    Article  Google Scholar 

  • Butt, A., Ali, J. S., Sajjad, A., Naz, S., & Zia, M. (2022). Biogenic synthesis of cerium oxide nanoparticles using petals of Cassia glauca and evaluation of antimicrobial, enzyme inhibition, antioxidant, and nanozyme activities. Biochemical Systematics and Ecology, 104, 104462.

    Article  CAS  Google Scholar 

  • Caputo, F., Mameli, M., Sienkiewicz, A., Licoccia, S., Stellacci, F., Ghibelli, L., & Traversa, E. (2017). A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity. Scientific Reports, 7(1), 1–13.

    Article  CAS  Google Scholar 

  • Chandra, C., & Khan, F. (2020). Nano scale zerovalent nickel: green synthesis, characterization, and efficient removal of lead from aqueous solution. Inorganic and Nano-Metal Chemistry, 50(10), 1044–1052.

    Article  CAS  Google Scholar 

  • Chen, G., & Xu, Y. (2018). Biosynthesis of cerium oxide nanoparticles and their effect on lipopolysaccharide (LPS) induced sepsis mortality and associated hepatic dysfunction in male Sprague Dawley rats. Materials Science and Engineering: C, 83, 148–153.

    Article  CAS  Google Scholar 

  • Chen, Y., Zhang, Q., Chen, L., Bai, H., & Li, L. (2013). Basic aluminumsulfate@ graphene hydrogel composites: preparation and application for removal of fluoride. Journal of Materials Chemistry A, 1(42), 13101–13110.

    Article  CAS  Google Scholar 

  • Chigondo, M., Paumo, H. K., Bhaumik, M., Pillay, K., & Maity, A. (2018). Rapid high adsorption performance of hydrous cerium-magnesium oxides for removal of fluoride from water. Journal of Molecular Liquids, 265, 496–509.

    Article  CAS  Google Scholar 

  • Darroudi, M., Hakimi, M., Sarani, M., Oskuee, R. K., Zak, A. K., & Gholami, L. (2013). Facile synthesis, characterization, and evaluation of neurotoxicity effect of cerium oxide nanoparticles. Ceramics International, 39(6), 6917–6921.

    Article  CAS  Google Scholar 

  • Debroy, M., Dolai, M. K., Sahoo, T. P., Dasgupta, S., & Gagrai, M. K. (2021). Synthesis of rare earth metal oxide nanoparticle for simultaneous removal of fluoride and As (III) from aqueous solution. Groundwater for Sustainable Development, 12, 100512.

    Article  Google Scholar 

  • Dehghani, M. H., Haghighat, G. A., Yetilmezsoy, K., McKay, G., Heibati, B., Tyagi, I., ..., & Gupta, V. K. (2016). Adsorptive removal of fluoride from aqueous solution using single-and multi-walled carbon nanotubes. Journal of Molecular Liquids216, 401–410.

  • Dhillon, A., Nair, M., Bhargava, S. K., & Kumar, D. (2015). Excellent fluoride decontamination and antibacterial efficacy of Fe–Ca–Zr hybrid metal oxide nanomaterial. Journal of Colloid and Interface Science, 457, 289–297.

    Article  CAS  Google Scholar 

  • Dhillon, A., Sharma, T. K., Soni, S. K., & Kumar, D. (2016). Fluoride adsorption on a cubical ceria nanoadsorbent: function of surface properties. RSC Advances, 6(92), 89198–89209.

    Article  CAS  Google Scholar 

  • Farahmandjou, M., Zarinkamar, M., & Firoozabadi, T. P. (2016). Synthesis of Cerium Oxide (CeO2) nanoparticles using simple CO-precipitation method. Revistamexicana De Física, 62(5), 496–499.

    CAS  Google Scholar 

  • Ge, J., Qu, J., Lei, P., & Liu, H. (2004). New bipolar electrocoagulation–electroflotation process for the treatment of laundry wastewater. Separation and Purification Technology, 36(1), 33–39.

    Article  CAS  Google Scholar 

  • Ghahramani, Z., Arabi, A. M., ShafieeAfarani, M., & Mahdavian, M. (2020). Solution combustion synthesis of cerium oxide nanoparticles as corrosion inhibitor. International Journal of Applied Ceramic Technology, 17(3), 1514–1521.

    Article  CAS  Google Scholar 

  • He, J., & Chen, J. P. (2014). A zirconium-based nanoparticle: essential factors for sustainable application in treatment of fluoride containing water. Journal of Colloid and Interface Science, 416, 227–234.

    Article  CAS  Google Scholar 

  • Hosseini, M., Amjadi, I., Mohajeri, M., & Mozafari, M. (2020). Sol–gel synthesis, physico-chemical and biological characterization of cerium oxide/polyallylamine nanoparticles. Polymers, 12(7), 1444.

  • Ibrahim, S. R., & Mohamed, G. A. (2015). Litchi chinensis: medicinal uses, phytochemistry, and pharmacology. Journal of Ethnopharmacology, 174, 492–513.

    Article  CAS  Google Scholar 

  • Jain, S., & Mehata, M. S. (2017). Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Scientific Reports, 7(1), 1–13.

  • Kabay, N., & Kodama, H. (2000). Ion exchange properties of BiO (NO3) 0.5 H2O towards fluoride ions. Solvent Extraction and Ion Exchange, 18(3), 583–603.

    Article  CAS  Google Scholar 

  • Kang, D., Yu, X., & Ge, M. (2017). Morphology-dependent properties and adsorption performance of CeO2 for fluoride removal. Chemical Engineering Journal, 330, 36–43.

    Article  CAS  Google Scholar 

  • Kannan, S. K., & Sundrarajan, M. (2014). A green approach for the synthesis of a cerium oxide nanoparticle: characterization and antibacterial activity. International Journal of Nanoscience, 13(03), 1450018.

    Article  CAS  Google Scholar 

  • Karthikeyan, M., Kumar, K. S., & Elango, K. P. (2011). Batch sorption studies on the removal of fluoride ions from water using eco-friendly conducting polymer/bio-polymer composites. Desalination, 267(1), 49–56.

    Article  CAS  Google Scholar 

  • Kashyap, K., Khan, F., Verma, D.K. et al. (2022). Effective removal of uranium from aqueous solution by using cerium oxide nanoparticles derived from citrus limon peel extract. Journal of Radioanalytical and Nuclear Chemistry. https://doi.org/10.1007/s10967-021-08138-4

  • Khadar, Y. S., Balamurugan, A., Devarajan, V. P., Subramanian, R., & Kumar, S. D. (2019). Synthesis, characterization and antibacterial activity of cobalt doped cerium oxide (CeO2: Co) nanoparticles by using hydrothermal method. Journal of Materials Research and Technology, 8(1), 267–274.

    Article  Google Scholar 

  • Khatibikamal, V., Torabian, A., Janpoor, F., & Hoshyaripour, G. (2010). Fluoride removal from industrial wastewater using electrocoagulation and its adsorption kinetics. Journal of Hazardous Materials, 179(1–3), 276–280.

    Article  CAS  Google Scholar 

  • Kir, E., & Alkan, E. (2006). Fluoride removal by Donnan dialysis with plasma-modified and unmodified anion-exchange membranes. Desalination, 197(1–3), 217–224. https://doi.org/10.1016/j.desal.2006.01.018

  • Kuang, L., Liu, Y., Fu, D., & Zhao, Y. (2017). FeOOH-graphene oxide nanocomposites for fluoride removal from water: Acetate mediated nano FeOOH growth and adsorption mechanism. Journal of Colloid and Interface Science, 490, 259–269.

    Article  CAS  Google Scholar 

  • Mahvi, A. H., Heibati, B., Mesdaghinia, A., & Yari, A. R. (2012). Fluoride adsorption by pumice from aqueous solutions. Journal of Chemistry, 9(4), 1843–1853.

  • Maity, J. P., Vithanage, M., Kumar, M., Ghosh, A., Mohan, D., Ahmad, A., & Bhattacharya, P. (2021). Seven 21st century challenges of arsenic-fluoride contamination and remediation. Groundwater for Sustainable Development, 12, 100538.

    Article  Google Scholar 

  • Maleki, P., Nemati, F., Gholoobi, A., Hashemzadeh, A., Sabouri, Z., & Darroudi, M. (2021). Green facile synthesis of silver-doped cerium oxide nanoparticles and investigation of their cytotoxicity and antibacterial activity. Inorganic Chemistry Communications, 131, 108762.

    Article  CAS  Google Scholar 

  • Mameri, N., Yeddou, A. R., Lounici, H., Belhocine, D., Grib, H., & Bariou, B. (1998). Defluoridation of septentrional Sahara water of North Africa by electrocoagulation process using bipolar aluminium electrodes. Water Research, 32(5), 1604–1612.

    Article  CAS  Google Scholar 

  • Masciangoli, T., & Zhang, W. (2003). Environmental Technologies. Environmental Science and Technology, 37, 102–108.

    Google Scholar 

  • Metwally, D. M., Alkhuriji, A. F., Barakat, I. A., Baghdadi, H. B., El-Khadragy, M. F., Al-Megrin, W. A. I., …, & Alajmi, F. E. (2022). Protective effect of Litchi chinensis peel extract-prepared nanoparticles on rabbits experimentally infected with Eimeria stiedae. Animals12(22), 3098.

  • Minju, N., VenkatSwaroop, K., Haribabu, K., Sivasubramanian, V., & Senthil Kumar, P. (2015). Removal of fluoride from aqueous media by magnesium oxide-coated nanoparticles. Desalination and Water Treatment, 53(11), 2905–2914.

    Article  CAS  Google Scholar 

  • Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346–356.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, K., Ghosh, A., Das, S. K., Show, B., Sasikumar, P., & Ghosh, U. C. (2017). Synthesis and characterisation of cerium (IV)-incorporated hydrous iron (III) oxide as an adsorbent for fluoride removal from water. RSC Advances, 7(42), 26037–26051.

    Article  CAS  Google Scholar 

  • Murad, U., Khan, S. A., Ibrar, M., Ullah, S., & Khattak, U. (2018). Synthesis of silver and gold nanoparticles from leaf of Litchi chinensis and its biological activities. Asian Pacific Journal of Tropical Biomedicine, 8(3), 142.

    Article  Google Scholar 

  • Nagy, K., & Dékány, I. (2009). Preparation of nanosize cerium oxide particles in W/O microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 345(1–3), 31–40.

    Article  CAS  Google Scholar 

  • Nayana, V., Leela, G. R., Kalpana, C., JenittaEmimaPackiyam, E., & Shwetha, S. D. (2019). Green synthesis of silver nano particles from Litchi seeds and its antimicrobial activity. International Journal of Current Research in Chemistry and Pharmaceutical Sciences, 6(2), 30–36.

    CAS  Google Scholar 

  • Ndiaye, P. I., Moulin, P., Dominguez, L., Millet, J. C., & Charbit, F. (2005). Removal of fluoride from electronic industrial effluentby RO membrane separation. Desalination, 173(1), 25–32.

    Article  CAS  Google Scholar 

  • Nyoka, M., Choonara, Y. E., Kumar, P., Kondiah, P. P., & Pillay, V. (2020). Synthesis of cerium oxide nanoparticles using various methods: Implications for biomedical applications. Nanomaterials, 10(2), 242.

    Article  CAS  Google Scholar 

  • Oladoja, N. A., Hu, S., Drewes, J. E., & Helmreich, B. (2016). Insight into the defluoridation efficiency of nano magnesium oxide in groundwater system contaminated with hexavalent chromium and fluoride. Separation and Purification Technology, 162, 195–202.

    Article  CAS  Google Scholar 

  • Onwudiwe, D. C., Ravele, M. P., & Elemike, E. E. (2020). Eco-friendly synthesis, structural properties and morphology of cobalt hydroxide and cobalt oxide nanoparticles using extract of Litchi chinensis. Nano-Structures & Nano-Objects, 23, 100470.

    Article  CAS  Google Scholar 

  • Raghav, S., & Kumar, D. (2019). Comparative kinetics and thermodynamic studies of fluoride adsorption by two novel synthesized biopolymer composites. Carbohydrate Polymers, 203, 430–440.

    Article  CAS  Google Scholar 

  • Raghav, S., Sapna, & Kumar, D. (2018). Cubical-shaped rods of pectin–hydroxyapatite composite for adsorption studies of fluoride by statistical method and adsorption experiments. ACS Omega, 3(8), 9675–9688.

    Article  CAS  Google Scholar 

  • Rashid, U. S., Das, T. K., Sakthivel, T. S., Seal, S., & Bezbaruah, A. N. (2021). GO-CeO2 nanohybrid for ultra-rapid fluoride removal from drinking water. Science of the Total Environment, 793, 148547.

    Article  CAS  Google Scholar 

  • Ravichandran, V., Vasanthi, S., Shalini, S., Shah, S. A. A., Tripathy, M., & Paliwal, N. (2019). Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles. Results in Physics, 15, 102565.

    Article  Google Scholar 

  • Sahoo, S. K., & Hota, G. (2018). Kinetics, isotherm, thermodynamic and bioperformanceofdefluoridation of water using praseodymium-modified chitosan. Journal of Environmental Chemical Engineering, 6, 2918–2931.

    Article  CAS  Google Scholar 

  • Sebastiammal, S., Bezy, N. A., Somaprabha, A., Henry, J., Biju, C. S., & Fathima, A. L. (2022). Chemical and sweet basil leaf mediated synthesis of cerium oxide (CeO2) nanoparticles: Antibacterial action toward human pathogens. Phosphorus, Sulfur, and Silicon and the Related Elements, 197(3), 237–243.

    Article  CAS  Google Scholar 

  • Sharmila, G., Muthukumaran, C., Saraswathi, H., Sangeetha, E., Soundarya, S., & Kumar, N. M. (2019). Green synthesis, characterization and biological activities of nanoceria. Ceramics International, 45(9), 12382–12386.

    Article  CAS  Google Scholar 

  • Shekhawat, A., Kahu, S. S., Saravanan, D., & Jugade, R. M. (2016). Assimilation of chitin with tin for defluoridation of water. RSC Advances, 6(23), 18936–18945.

    Article  CAS  Google Scholar 

  • Shen, J., & Schäfer, A. (2014). Removal of fluoride and uranium by nanofiltration and reverse osmosis: A review. Chemosphere, 117, 679–691.

    Article  CAS  Google Scholar 

  • Singh, K. R., Nayak, V., Sarkar, T., & Singh, R. P. (2020). Cerium oxide nanoparticles: Properties, biosynthesis and biomedical application. RSC Advances, 10(45), 27194–27214.

    Article  CAS  Google Scholar 

  • Sreeremya, T. S., Thulasi, K. M., Krishnan, A., & Ghosh, S. (2012). A novel aqueous route to fabricate ultrasmall monodisperse lipophilic cerium oxide nanoparticles. Industrial & Engineering Chemistry Research, 51(1), 318–326.

    Article  CAS  Google Scholar 

  • Sridharan, M., Kamaraj, P., Arockiaselvi, J., Pushpamalini, T., Vivekanand, P. A., & Kumar, S. H. (2021). Synthesis, characterization and evaluation of biosynthesized cerium oxide nanoparticle for its anticancer activity on breast cancer cell (MCF 7). Materials Today: Proceedings, 36, 914–919.

    CAS  Google Scholar 

  • Tamizhdurai, P., Sakthinathan, S., Chen, S. M., Shanthi, K., Sivasanker, S., & Sangeetha, P. (2017). Environmentally friendly synthesis of CeO2 nanoparticles for the catalytic oxidation of benzyl alcohol to benzaldehyde and selective detection of nitrite. Scientific Reports, 7(1), 1–13.

    Article  Google Scholar 

  • Taneja, L., Raghav, S., Kochar, C., Yadav, P. K., & Tripathy, S. S. (2021). Effective remediation of fluoride from drinking water using cerium-silver oxide composite incorporated with reduced graphene oxide. Journal of Water Process Engineering, 44, 102369.

    Article  Google Scholar 

  • Tehri, N., Kaur, R., Maity, M., Chauhan, A., Hooda, V., Vashishth, A., & Kumar, G. (2020). Biosynthesis, characterization, bactericidal and sporicidal activity of silver nanoparticles using the leaves extract of Litchi chinensis. Preparative Biochemistry & Biotechnology, 50(9), 865–873.

    Article  CAS  Google Scholar 

  • Vasudevan, P. (2023). Biogenic synthesis of Cerium oxide nanoparticles using Justicia Adathoda leaves extract: Size-strain study by X-ray peak profile analysis and luminescence characteristics. Journal of Molecular Structure, 1272, 134144.  https://doi.org/10.1016/j.molstruc.2022.134144

  • Vatanparast, M., & Saedi, L. (2018). Sonochemical-assisted synthesis and characterization of CeO2 nanoparticles and its photocatalytic properties. Journal of Materials Science: Materials in Electronics, 29(9), 7107–7113.

    CAS  Google Scholar 

  • Verma, P. R., Khan, F., & Banerjee, S. (2020). Salvadora persica root extract-mediated fabrication of ZnO nanoparticles and characterization. Inorganic and Nano-Metal Chemistry, 51(3), 427–433.

    Article  Google Scholar 

  • Wang, S., Wang, W., Zuo, J., & Qian, Y. (2001). Study of the Raman spectrum of CeO2 nanometer thin films. Materials Chemistry and Physics, 68(1–3), 246–248. https://doi.org/10.1016/S0254-0584(00)00357-6

  • Wang, J., Xu, W., Chen, L., Jia, Y., Wang, L., Huang, X. J., & Liu, J. (2013). Excellent fluoride removal performance by CeO2–ZrO2 nanocages in water environment. Chemical Engineering Journal, 231, 198–205.

    Article  CAS  Google Scholar 

  • Yang, C. L., & Dluhy, R. (2002). Electrochemical generation of aluminum sorbent for fluoride adsorption. Journal of Hazardous Materials, 94(3), 239–252.

    Article  CAS  Google Scholar 

  • Yi, Y. U. N. H. O. N. G., Lv, J., Liu, Y., & Wu, G. (2017). Synthesis and application of modified Litchi peel for removal of hexavalent chromium from aqueous solutions. Journal of Molecular Liquids, 225, 28–33.

    Article  CAS  Google Scholar 

  • Yu, Y., Zhang, C., Yang, L., & Chen, J. P. (2017). Cerium oxide modified activated carbon as an efficient and effective adsorbent for rapid uptake of arsenate and arsenite: Material development and study of performance and mechanisms. Chemical Engineering Journal, 315, 630–638.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Chemistry, National Institute of Technology Raipur, India for providing laboratory facility. Komal Kashyap, one of the authors, expresses gratitude to the CSIR for providing fellowship (file number 09/1116(0007)/2018 EMR-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subrat Kumar Pattanayak or Fahmida Khan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, K., Verma, D.K., Pattanayak, S.K. et al. Green Synthesized Cerium Oxide Nanoparticles as Efficient Adsorbent for Removal of Fluoride Ion from Aqueous Solution. Water Air Soil Pollut 234, 179 (2023). https://doi.org/10.1007/s11270-023-06191-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06191-1

Keywords

Navigation