Skip to main content

Advertisement

Log in

2D Layered K-Birnessite MnO2-Based Photocatalytic Membrane for Catalytic Filtration Degradation of Organic Pollutants

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The photocatalytic degradation of pollutants in wastewater shows promise as a potential sustainable water treatment technology. The main challenges in the application of nanocatalysts are catalyst recovery and toxic effects. In this paper, a simple vacuum filter was used to fix a photocatalyst on a membrane surface, which alleviated the problem of catalyst recovery. These synthetic membranes were able to filter and degrade contaminants, alleviating the problems of reduced separation efficiency and shortened membrane life. In this work, K-birnessite MnO2 photocatalyst was prepared by a simple hydrothermal reaction, and K-birnessite MnO2 photocatalytic film was prepared by a simple vacuum filtration method. This membrane showed excellent catalytic activity for the degradation of methylene blue (MB). The photocatalytic membrane prepared in this paper was able to catalyze the oxidation of peroxymonosulfate (PMS) to degrade organic dyes in aqueous solution at a constant flow rate of 1 ml/min under simulated sunlight. Furthermore, the membrane also showed good performance under dark conditions. A mechanism analysis showed that the OH. and SO4.− produced by PMS interacting with the different oxidation states of Mn were the main causes of dye degradation. The catalytic filtration process using the K-birnessite MnO2 catalytic membrane provides a new method for wastewater purification with high efficiency and low energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the finding of this study are available from the corresponding author upon reasonable request.

References

  • Bai, H., Liu, Z., & Sun, D. D. (2010). Hierarchically multifunctional TiO(2) nano-thorn membrane for water purification. Chemical Communications (cambridge, England), 46, 6542–6544.

    Article  CAS  Google Scholar 

  • Barai, H. R., Banerjee, A. N., & Joo, S. W. (2017). Improved electrochemical properties of highly porous amorphous manganese oxide nanoparticles with crystalline edges for superior supercapacitors. Journal of Industrial and Engineering Chemistry, 56, 212–224.

    Article  CAS  Google Scholar 

  • Damodar, R. A., You, S. J., & Chou, H. H. (2009). Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. Journal of Hazardous Materials, 172, 1321–1328.

    Article  CAS  Google Scholar 

  • De Angelis, L., & de Cortalezzi, M. M. F. (2016). Improved membrane flux recovery by Fenton-type reactions. Journal of Membrane Science, 500, 255–264.

    Article  Google Scholar 

  • Fane, A. G. (2007). Sustainability and membrane processing of wastewater for reuse. Desalination, 202, 53–58.

    Article  CAS  Google Scholar 

  • Gao, T., Fjellvag, H., & Norby, P. (2009). Structural and morphological evolution of beta-MnO2 nanorods during hydrothermal synthesis. Nanotechnology, 20, 055610.

    Article  Google Scholar 

  • Gao, W., Liang, H., Ma, J., Han, M., Chen, Z.-L., Han, Z.-S., & Li, G.-B. (2011). Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination, 272, 1–8.

    Article  CAS  Google Scholar 

  • Ghanbari, F., & Moradi, M. (2017). Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chemical Engineering Journal, 310, 41–62.

    Article  CAS  Google Scholar 

  • Hou, J., Li, Y., Liu, L., Ren, L. & Zhao, X. (2013). Effect of giant oxygen vacancy defects on the catalytic oxidation of OMS-2 nanorods. Journal of Materials Chemistry Ahttps://doi.org/10.1039/C3TA11566F

  • Huang, J., Dai, Y., Singewald, K., Liu, C.-C., Saxena, S., & Zhang, H. (2019). Effects of MnO2 of different structures on activation of peroxymonosulfate for bisphenol A degradation under acidic conditions. Chemical Engineering Journal, 370, 906–915.

    Article  CAS  Google Scholar 

  • Huang, C., Wang, Y., Gong, M., Wang, W., Mu, Y. & Hu, Z.-H. (2020). α-MnO2/Palygorskite composite as an effective catalyst for heterogeneous activation of peroxymonosulfate (PMS) for the degradation of Rhodamine B. Separation and Purification Technologyhttps://doi.org/10.1016/j.seppur.2019.115877

  • Jia, Z., Duan, X., Zhang, W., Wang, W., Sun, H., Wang, S., & Zhang, L. C. (2016). Ultra-sustainable Fe78Si9B13 metallic glass as a catalyst for activation of persulfate on methylene blue degradation under UV-Vis light. Science and Reports, 6, 38520.

    Article  CAS  Google Scholar 

  • Kim, E. J., Lee, C. S., Chang, Y. Y., & Chang, Y. S. (2013). Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Applied Materials & Interfaces, 5, 9628–9634.

    Article  CAS  Google Scholar 

  • Kruk, I., Zajdel, P., van Beek, W., Bakaimi, I., Lappas, A., Stock, C., & Green, M. A. (2011). Coupled commensurate cation and charge modulation in the tunneled structure, Na(0.40(2))MnO(2). Journal of the American Chemical Society, 133, 13950–13956.

    Article  CAS  Google Scholar 

  • Lee, A., Elam, J. W., & Darling, S. B. (2016). Membrane materials for water purification: Design, development, and application. Environmental Science: Water Research & Technology, 2, 17–42.

    CAS  Google Scholar 

  • Leong, S., Razmjou, A., Wang, K., Hapgood, K., Zhang, X., & Wang, H. (2014). TiO2 based photocatalytic membranes: A review. Journal of Membrane Science, 472, 167–184.

    Article  CAS  Google Scholar 

  • Liang, H., Sun, H., Patel, A., Shukla, P., Zhu, Z. H., & Wang, S. (2012). Excellent performance of mesoporous Co3O4/MnO2 nanoparticles in heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions. Applied Catalysis b: Environmental, 127, 330–335.

    Article  CAS  Google Scholar 

  • Lu, X., Zhai, T., Zhang, X., Shen, Y., Yuan, L., Hu, B., Gong, L., Chen, J., Gao, Y., Zhou, J., Tong, Y., & Wang, Z. L. (2012). WO3-x@Au@MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors. Advanced Materials, 24, 938–944.

    Article  CAS  Google Scholar 

  • Luo, L., Wu, D., Dai, D., Yang, Z., Chen, L., Liu, Q., He, J., & Yao, Y. (2017). Synergistic effects of persistent free radicals and visible radiation on peroxymonosulfate activation by ferric citrate for the decomposition of organic contaminants. Applied Catalysis b: Environmental, 205, 404–411.

    Article  CAS  Google Scholar 

  • Lv, Y., Zhang, C., He, A., Yang, S. J., Wu, G. P., Darling, S. B. & Xu, Z. K. (2017). Photocatalytic nanofiltration membranes with self‐cleaning property for wastewater treatment. Advanced Functional Materialshttps://doi.org/10.1002/adfm.201700251

  • Matilainen, A., & Sillanpaa, M. (2010). Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere, 80, 351–365.

    Article  CAS  Google Scholar 

  • Meng, F., Zhang, H., Li, Y., Zhang, X., Yang, F., & Xiao, J. (2005). Cake layer morphology in microfiltration of activated sludge wastewater based on fractal analysis. Separation and Purification Technology, 44, 250–257.

    Article  CAS  Google Scholar 

  • Pablos, C., Marugan, J., van Grieken, R., & Serrano, E. (2013). Emerging micropollutant oxidation during disinfection processes using UV-C, UV-C/H2O2, UV-A/TiO2 and UV-A/TiO2/H2O2. Water Research, 47, 1237–1245.

    Article  CAS  Google Scholar 

  • Rahimpour, A., Madaeni, S. S., Taheri, A. H., & Mansourpanah, Y. (2008). Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. Journal of Membrane Science, 313, 158–169.

    Article  CAS  Google Scholar 

  • Singh, M., Thanh, D. N., Ulbrich, P., Strnadová, N., & Štěpánek, F. (2010). Synthesis, characterization and study of arsenate adsorption from aqueous solution by α- and δ-phase manganese dioxide nanoadsorbents. Journal of Solid State Chemistry, 183, 2979–2986.

    Article  CAS  Google Scholar 

  • Sun, H., Yang, X., Zhao, L., Xu, T., & Lian, J. (2016). One-pot hydrothermal synthesis of octahedral CoFe/CoFe2O4 submicron composite as heterogeneous catalysts with enhanced peroxymonosulfate activity. Journal of Materials Chemistry A, 4, 9455–9465.

    Article  CAS  Google Scholar 

  • Taujale, S., Baratta, L. R., Huang, J., & Zhang, H. (2016). Interactions in ternary mixtures of MnO2, Al2O3, and natural organic matter (NOM) and the impact on MnO2 oxidative reactivity. Environmental Science and Technology, 50, 2345–2353.

    Article  CAS  Google Scholar 

  • Tokumura, M., Sugawara, A., Raknuzzaman, M., Habibullah-Al-Mamun, M., & Masunaga, S. (2016). Comprehensive study on effects of water matrices on removal of pharmaceuticals by three different kinds of advanced oxidation processes. Chemosphere, 159, 317–325.

    Article  CAS  Google Scholar 

  • Van Geluwe, S., Braeken, L., & Van der Bruggen, B. (2011). Ozone oxidation for the alleviation of membrane fouling by natural organic matter: A review. Water Research, 45, 3551–3570.

    Article  Google Scholar 

  • Wang, Y., Wang, X., & Antonietti, M. (2012). Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angewandte Chemie (international Ed. in English), 51, 68–89.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhao, H., Li, M., Fan, J., & Zhao, G. (2014). Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid. Applied Catalysis b: Environmental, 147, 534–545.

    Article  CAS  Google Scholar 

  • Wang, N., Zheng, T., Zhang, G., & Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4, 762–787.

    Article  CAS  Google Scholar 

  • Wintgens, T., Melin, T., Schäfer, A., Khan, S., Muston, M., Bixio, D., & Thoeye, C. (2005). The role of membrane processes in municipal wastewater reclamation and reuse. Desalination, 178, 1–11.

    Article  CAS  Google Scholar 

  • Yang, Q., Wang, D., Wang, C., Li, X., Li, K., Peng, Y., & Li, J. (2018). Facile surface improvement method for LaCoO3 for toluene oxidation. Catalysis Science & Technology, 8, 3166–3173.

    Article  CAS  Google Scholar 

  • Zhai, W., Wang, C., Yu, P., Wang, Y., & Mao, L. (2014). Single-layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin: Mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Analytical Chemistry, 86, 12206–12213.

    Article  CAS  Google Scholar 

  • Zhang, X., Du, A. J., Lee, P., Sun, D. D., & Leckie, J. O. (2008). TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water. Journal of Membrane Science, 313, 44–51.

    Article  CAS  Google Scholar 

  • Zhang, X., Yu, P., Zhang, H., Zhang, D., Sun, X., & Ma, Y. (2013a). Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochimica Acta, 89, 523–529.

    Article  CAS  Google Scholar 

  • Zhang, Y., Xiong, Y., Tang, Y., & Wang, Y. (2013b). Degradation of organic pollutants by an integrated photo-Fenton-like catalysis/immersed membrane separation system. Journal of Hazardous Materials, 244–245, 758–764.

    Article  Google Scholar 

  • Zhang, L., Lian, J., Wu, L., Duan, Z., Jiang, J., & Zhao, L. (2014). Synthesis of a thin-layer MnO(2) nanosheet-coated Fe(3)O(4) nanocomposite as a magnetically separable photocatalyst. Langmuir, 30, 7006–7013.

    Article  CAS  Google Scholar 

  • Zhao, D., Yang, X., Zhang, H., Chen, C., & Wang, X. (2010). Effect of environmental conditions on Pb(II) adsorption on β-MnO2. Chemical Engineering Journal, 164, 49–55.

    Article  CAS  Google Scholar 

  • Zhao, H., Zhang, G., & Zhang, Q. (2014). MnO2/CeO2 for catalytic ultrasonic degradation of methyl orange. Ultrasonics Sonochemistry, 21, 991–996.

    Article  CAS  Google Scholar 

  • Zhao, Y., Zhang, J., Wu, W., Guo, X., Xiong, P., Liu, H., & Wang, G. (2018). Cobalt-doped MnO2 ultrathin nanosheets with abundant oxygen vacancies supported on functionalized carbon nanofibers for efficient oxygen evolution. Nano Energy, 54, 129–137.

    Article  CAS  Google Scholar 

  • Zhou, C., Wang, J., Liu, X., Chen, F., Di, Y., Gao, S., & Shi, Q. (2018). Magnetic and thermodynamic properties of α, β, γ and δ-MnO2. New Journal of Chemistry, 42, 8400–8407.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Hainan Provincial Natural Science Foundation of China (Grant nos. ZDYF2021GXJS209, 421RC483 and 2019RC141); the National Natural Science Foundation of China (Grant Nos. 52161030 and 51901059); and the Foundation of State Key Laboratory of Marine Resource Utilization in South China Sea (Hainan University) (Grant No. MRUKF2021031).

Author information

Authors and Affiliations

Authors

Contributions

Peng Tang: conceptualization, methodology, investigation, formal analysis, writing—original draft, writing—review and editing. Wei Huang: investigation, formal analysis, writing—review and editing. Dun Wang: formal analysis, writing—review and editing. Zhongxin Liu: supervision and writing—review and editing. Jieqiong Wang: supervision, conceptualization, writing—review and editing.

Corresponding authors

Correspondence to Zhongxin Liu or Jieqiong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, P., Huang, W., Wang, D. et al. 2D Layered K-Birnessite MnO2-Based Photocatalytic Membrane for Catalytic Filtration Degradation of Organic Pollutants. Water Air Soil Pollut 234, 120 (2023). https://doi.org/10.1007/s11270-023-06133-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06133-x

Keywords

Navigation