Skip to main content
Log in

Highly Efficient Removal of Cadmium by Sulfur-Modified Biochar: Process and Mechanism

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The problems of biochar such as low adsorption capacity and slow adsorption rate limit its application in removing cadmium from water. However, the modification for enhancing the efficiency and expanding the application of biochar is a good way. In this paper, sulfur-modified biochar (SBC) derived from bagasse was prepared by impregnation pyrolysis at 500 °C. Sulfur was successfully loaded on the surface of biochar by SEM–EDS analysis and the specific surface area of SBC could be significantly increased by BET analysis. Batch experiments showed that the cadmium removal efficiency by SBC could reach more than 90% within 10 min, and the maximum adsorption capacity of cadmium was 268.2 mg g−1, which was 22.35 times as high as that of unmodified biochar. Ion exchange with Na+, surface precipitation (CdCO3 and CdS), complexation with C-SH, S–O, and COOH, and electrostatic interaction were the main mechanisms by XRD, FT-IR, and XPS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Cai, T., Liu, X. L., Zhang, J. C., Tie, B. Q., Lei, M., Wei, X. D., Peng, O., & Du, H. H. (2021). Silicate-modified oiltea camellia shell-derived biochar: A novel and cost-effective sorbent for Cd removal. Journal of Cleaner Production, 281, 125390.

    Article  CAS  Google Scholar 

  • Chen, D., Wang, X. B., Wang, X. L., Feng, K., Su, J. C., & Dong, J. N. (2020a). The mechanism of Cd sorption by sulphur-modified wheat straw biochar and its application Cd-contaminated soil. Science of the Total Environment, 714, 136550.

    Article  CAS  Google Scholar 

  • Chen, Y., Shan, R. F., & Sun, X. Y. (2020b). Adsorption of cadmium by magnesium-modified biochar at different pyrolysis temperatures. BioResources, 15(1), 767–786.

    Article  CAS  Google Scholar 

  • Chen, Y. N., Li, M. L., Li, Y. P., Liu, Y. H., Chen, Y. R., Li, H., Li, L. S. Z., Xu, F. T., Jiang, H. J., & Chen, L. (2021). Hydroxyapatite modified sludge-based biochar for the adsorption of Cu2+ and Cd2+: Adsorption behavior and mechanisms. Bioresource Technology, 321, 124413.

    Article  CAS  Google Scholar 

  • Deng, R., Huang, D. L., Wan, J., Xue, W. J., Lei, L., Wen, X. F., Liu, X. G., Chen, S., Yang, Y., Li, Z. H., & Li, B. (2019). Chloro-phosphate impregnated biochar prepared by co-precipitation for the lead, cadmium and copper synergic scavenging from aqueous solution. Bioresource Technology, 293, 122102.

    Article  CAS  Google Scholar 

  • Ding, Z., Hu, X., Wan, Y., Wang, S., & Gao, B. (2016). Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. Journal of Industrial and Engineering Chemistry, 33, 239–245.

    Article  CAS  Google Scholar 

  • Dong, X. L., Ma, L. N. Q., Zhu, Y. J., Li, Y. C., & Gu, B. H. (2013). Mechanistic investigation of mercury sorption by Brazilian pepper biochars of different pyrolytic temperatures based on X-ray photoelectron spectroscopy and flow calorimetry. Environmental Science and Technology, 47(21), 12156–12164.

    Article  CAS  Google Scholar 

  • Gao, R. L., Fu, Q. L., Hu, H. Q., Wang, Q., Liu, Y. H., & Zhu, J. (2019). Highly-effective removal of Pb by co-pyrolysis biochar derived from rapestraw and orthophosphate. Journal of Hazardous Materials, 371, 191–197.

    Article  CAS  Google Scholar 

  • Huang, S. Z., Liang, Q. W., Geng, J. J., Luo, H. J., & Wei, Q. (2019). Sulfurized biochar prepared by simplified technic with superior adsorption property towards aqueous Hg (II) and adsorption mechanisms. Materials Chemistry and Physics, 238, 121919.

    Article  CAS  Google Scholar 

  • Khan, Z. H., Gao, M. L., Qiu, W. W., & Song, Z. G. (2021). Mechanism of novel MoS2-modified biochar composites for removal of Cd (II) from aqueous solutions. Environmental Science and Pollution Research, 28(26), 34979–34989.

    Article  CAS  Google Scholar 

  • Kubier, A., Wilkin, R. T., & Pichler, T. (2019). Cd in soils and groundwater: A review. Applied Geochemistry, 108, 104388.

    Article  CAS  Google Scholar 

  • Li, H. B., Dong, X. L., Da Silva, E. B., De Oliveira, L. M., Chen, Y. S., & Ma, L. Q. (2017a). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466–478.

    Article  CAS  Google Scholar 

  • Li, Y., Wang, Z. W., Xie, X. Y., Zhu, J. M., Li, R. N., & Qin, T. T. (2017b). Removal of Norfloxacin from aqueous solution by clay-biochar composite prepared from potato stem and natural attapulgite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 514, 126–136.

    Article  CAS  Google Scholar 

  • Li, R. H., Liang, W., Huang, H., Jiang, S. C., Guo, D., Li, M. L., Zhang, Z. Q., Ali, A., & Wang, J. J. (2018). Removal of Cd (II) cations from an aqueous solution with aminothiourea chitosan strengthened magnetic biochar. Journal of Applied Polymer Science, 135(19), 46239.

    Article  Google Scholar 

  • Luo, M. K., Lin, H., Li, B., Dong, Y. B., He, Y. H., & Wang, L. (2018). A novel modification of lignin on corncob-based biochar to enhance removal of Cd from water. Bioresource Technology, 259, 312–318.

    Article  CAS  Google Scholar 

  • Pap, S., Boyd, K. G., Taggart, M. A., & Sekulic, M. T. (2021). Circular economy based landfill leachate treatment with sulphur-doped microporous biochar. Waste Management, 124, 160–171.

    Article  CAS  Google Scholar 

  • Park, J. H., Wang, J. J., Zhou, B., Mikhael, J. E. R., & DeLaune, R. D. (2019). Removing mercury from aqueous solution using sulfurized biochar and associated mechanisms. Environmental Pollution, 244, 627–635.

    Article  CAS  Google Scholar 

  • Peng, H. B., Gao, P., Chu, G., Pan, B., Peng, J. H., & Xing, B. S. (2017). Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environmental Pollution, 229, 846–853.

    Article  CAS  Google Scholar 

  • Qian, L. B., & Chen, B. L. (2014). Interactions of aluminum with biochars and oxidized biochars: Implications for the biochar aging process. Journal of Agriculture and Food Chemistry, 62(2), 373–380.

    Article  CAS  Google Scholar 

  • Singh, B., Fang, Y. Y., Cowie, B. C. C., & Thomsen, L. (2014). NEXAFS and XPS characterisation of carbon functional groups of fresh and aged biochars. Organic Geochemistry, 77, 1–10.

    Article  CAS  Google Scholar 

  • Tang, W. X., Cai, N. N., Xie, H. X., Liu, Y. C., Wang, Z. F., Liao, Y. H., Wei, T. T., Zhang, C., Fu, Z. H., & Yin, D. L. (2020). Efficient adsorption removal of Cd2+ from aqueous solutions by HNO3 modified bamboo-derived biochar. IOP Conference Series: Materials Science and Engineering, 729(1), 012081.

    Article  CAS  Google Scholar 

  • Trakal, L., Veselska, V., Safarik, I., Vitkova, M., Cihalova, S., & Komarek, M. (2016). Lead and Cd sorption mechanisms on magnetically modified biochars. Bioresource Technology, 203, 318–324.

    Article  CAS  Google Scholar 

  • Wang, Z. Y., Zheng, H., Luo, Y., Deng, X., Herbert, S., & Xing, B. S. (2013). Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environmental Pollution, 174, 289–296.

    Article  CAS  Google Scholar 

  • Wang, L., Wang, Y. J., Ma, F., Tankpa, V., Bai, S. S., Guo, X. M., & Wang, X. (2019). Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: A review. Science of the Total Environment, 668, 1298–1309.

    Article  CAS  Google Scholar 

  • Wu, C., Shi, L. Z., Xue, S. G., Li, W. C., Jiang, X. X., Rajendran, M., & Qian, Z. Y. (2019). Effect of sulfur-iron modified biochar on the available Cd and bacterial community structure in contaminated soils. Science of the Total Environment, 647, 1158–1168.

    Article  CAS  Google Scholar 

  • Yang, G. X., & Jiang, H. (2014). Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Research, 48, 396–405.

    Article  CAS  Google Scholar 

  • Yin, M. M., Bai, X. A., Wu, D. P., Li, F. B., Jiang, K., Ma, N. N., Chen, Z. H., Zhang, X., & Fang, L. P. (2022). Sulfur-functional group tunning on biochar through sodium thiosulfate modified molten salt process for efficient heavy metal adsorption. Chemical Engineering Journal, 433, 134441.

    Article  CAS  Google Scholar 

  • Zhang, L. J., Li, Z. H., Yang, Y. L., Zhou, Y. B., Li, J. H., Si, L. L., & Kong, B. (2016). Research on the composition and distribution of organic sulfur in coal. Molecules, 21(5), 630.

    Article  Google Scholar 

  • Zhang, H. Y., Yue, X. P., Li, F., Xiao, R., Zhang, Y. P., & Gu, D. Q. (2018). Preparation of rice straw-derived biochar for efficient Cd removal by modification of oxygen-containing functional groups. Science of the Total Environment, 631, 795–802.

    Article  Google Scholar 

  • Zhang, H. C., Wang, T., Sui, Z. F., Zhang, Y. S., Sun, B. M., & Pan, W. P. (2019a). Enhanced mercury removal by transplanting sulfur-containing functional groups to biochar through plasma. Fuel, 253, 703–712.

    Article  CAS  Google Scholar 

  • Zhang, L. X., Tang, S. Y., He, F. X., Liu, Y., Mao, W., & Guan, Y. T. (2019b). Highly efficient and selective capture of heavy metals by poly (acrylic acid) grafted chitosan and biochar composite for wastewater treatment. Chemical Engineering Journal, 378, 122215.

    Article  CAS  Google Scholar 

  • Zhang, D. W., Zhang, K. J., Hu, X. L., He, Q. Q., Yan, J. P., & Xue, Y. W. (2021). Cd removal by MgCl2 modified biochar derived from crayfish shell waste: Batch adsorption, response surface analysis and fixed bed filtration. Journal of Hazardous Materials, 408, 124860.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by Science and Technology Program Project of Qingyuan (2022KJJH019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanqiang Fang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

The authors consent to participate in the study.

Consent for Publication

The authors consent to publish the study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Chen, Y. & Fang, Z. Highly Efficient Removal of Cadmium by Sulfur-Modified Biochar: Process and Mechanism. Water Air Soil Pollut 234, 26 (2023). https://doi.org/10.1007/s11270-022-06005-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-06005-w

Keywords

Navigation