Skip to main content

Advertisement

Log in

Temperate Urban Streams as Summer-Critical Ecosystems Regarding Metal Contamination

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Urbanization leads to changes in the natural state of the environment, including changes in natural aquatic habitats within urbanized zones. In the present study, the impact of urbanization on the water quality of urban streams, which are important sources of drinking water and recreational areas for the urban population, was investigated along two streams in the Croatian capital Zagreb. The upper reaches of the two urban streams are largely pristine (located within a nature park), whereas their downstream reaches are physically altered and impacted by anthropogenic (residential, municipal, industrial, agricultural) activities. Several physico-chemical parameters were measured in the streams using standardized methods, while concentrations of 30 dissolved metals/metalloids in the water were measured using a high resolution inductively coupled plasma-mass spectrometer. Although the water quality of the streams studied was rather good, the influence of urbanization was evident. Different contamination levels were observed along the two streams, depending on the specific anthropogenic activities and contamination increase in the stream reaches closer to the city centre. Furthermore, the summer season of low water levels and water discharges proved to be the most critical time, with significant increases in many metals/metalloids in the water. Since stream quality evidently reflects urbanization, continuous monitoring of urban streams is recommended, especially during the warmer seasons. The results of this study could help to understand the effects of the “urban stream syndrome” along urban streams and its seasonal characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Alexander-Kwaterczak, U., & Plenzler, D. (2019). Contamination of small urban watercourses on the example of a stream in Krakow (Poland). Environmental Earth Sciences, 78, 530. https://doi.org/10.1007/s12665-019-8509-4

    Article  CAS  Google Scholar 

  • Ampontuah, E. O., Robinson, J. S., & Nortcliff, S. (2006). Assessment of soil particle redistribution on two contrasting cultivated hillslopes. Geoderma, 132, 324–343. https://doi.org/10.1016/j.geoderma.2005.05.014

    Article  Google Scholar 

  • APHA. (1985). Standard methods for the examination of water and wastewater. American Public Health Association

  • Bell, A. H., Coles, J. F., McMahon, G., & Woodside, M. D. (2012). Urban development results in stressors that degrade stream ecosystems. National Water-Quality Assessment Program, U.S. Department of the Interior, U.S. Geological Survey, Fact Sheet 2012–3071

  • Bernhardt, E. S., & Palmer, M. A. (2007). Restoring streams in an urbanizing world. Freshwater Biology, 52, 738–751. https://doi.org/10.1111/j.1365-2427.2006.01718.x

    Article  Google Scholar 

  • Bolund, P., & Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological Economics, 29, 293–301. https://doi.org/10.1016/S0921-8009(99)00013-0

    Article  Google Scholar 

  • Bondarenko, E. A., Il’ina, Kh. V., Andrianova, MJu., & Chusov, A. N. (2016). Main inorganic ions and electric conductivity of polluted urban streams. Magazine of Civil Engineering, 8, 37–44. https://doi.org/10.5862/MCE.68.4

    Article  Google Scholar 

  • Cundy, A. B., Croudace, I. W., Cearreta, A., & Irabien, M. J. (2003). Reconstructing historical trends in metal input in heavily disturbed, contaminated estuaries: studies from Bilbao, Southampton Water and Sicily. Applied Geochemistry, 18, 311–325. https://doi.org/10.1016/S0883-2927(02)00127-0

    Article  CAS  Google Scholar 

  • da Rocha, M. P., Dourado, P. L. R., de Souza Rodrigues, M., Raposo, J. L., Jr., Grisolia, A. B., & de Oliveira, K. M. P. (2015). The influence of industrial and agricultural waste on water quality in the Água Boa stream (Dourados, Mato Grosso do Sul, Brazil). Environmental Monitoring and Assessment, 187, 442. https://doi.org/10.1007/s10661-015-4475-9

    Article  CAS  Google Scholar 

  • Deutsches Institut für Normung. (1986). Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung, 16th ed. Verlag Chemie

  • Dragun, Z., Kapetanović, D., Raspor, B., & Teskeredžić, E. (2011). Water quality of medium size watercourse under baseflow conditions: The case study of river Sutla in Croatia. Ambio, 40, 391–407. https://doi.org/10.1007/s13280-010-0119-z

    Article  CAS  Google Scholar 

  • Dubrovsky, N. M., Burow, K. R., Clark, G. M., Gronberg, J. M., Hamilton, P. A., & Hitt, K. J. (2010). The quality of our nation’s waters – Nutrients in the nation’s streams and groundwater, 1992–2004. US Geological Survey Circular, 1350, 174.

    Google Scholar 

  • EPA (Environmental Protection Agency). (2017). CADDIS urbanization module. United States Environmental Protection Agency. https://www.epa.gov/caddis-vol2/urbanization-module-document. Accessed 26 May 2020

  • EPCEU (European Parliament and the Council of the European Union). (2008). Directive 2008/105/EC of the European Parliament and of the Council on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC, and amending Directive 2000/60/EC of the European Parliament and of the Council. Official Journal L 348/84

  • Fiket, Ž, Roje, V., Mikac, N., & Kniewald, G. (2007). Determination of arsenic and other trace elements in bottled waters by high resolution inductively coupled plasma mass spectrometry. Croatica Chemica Acta, 80, 91–100.

    CAS  Google Scholar 

  • Filipović Marijić, V., Sertić Perić, M., Matoničkin Kepčija, R., Dragun, Z., Kovarik, I., Gulin, V., & Erk, M. (2016). Assessment of metal exposure, ecological status and required water quality monitoring strategies in small- to medium-size temperate rivers. Journal of Environmental Science and Health, Part A, 51, 309–317. https://doi.org/10.1080/10934529.2015.1109393

    Article  CAS  Google Scholar 

  • Filipović Marijić, V., Dragun, Z., Sertić Perić, M., Matoničkin Kepčija, R., Gulin, V., Velki, M., Ečimović, S., Hackenberger, B. K., & Erk, M. (2016). Investigation of the soluble metals in tissue as biological response pattern to environmental pollutants (Gammarus fossarum example). Chemosphere, 154, 300–309. https://doi.org/10.1016/j.chemosphere.2016.03.058

    Article  CAS  Google Scholar 

  • GRC (Government of the Republic of Croatia). (2019). Directive on water classification. Official Gazette No. 96. (NN 96/19)

  • Gribovszki, Z., Kalicz, P., Csáfordi, P., Szita, R., Király, G., Pődör, A., & Ambrus, A. (2012). Hydrological changes due to urbanization along the Rák stream in Sopron. In M. Neményi & B. Heil (Eds.), The impact of urbanization, industrial, agricultural and forest technologies on the natural environment (pp. 161–170). Nemzeti Tankönyvkiadó.

    Google Scholar 

  • Haas, N., Werner, M., & SertićPerić, M. (2019). Short-term effects of natural stream discharge on the water quality trends along two small urban streams–A pilot study. Natura Croatica, 28, 289–303. https://doi.org/10.20302/NC.2019.28.21

    Article  Google Scholar 

  • Hooke, R., Le, B., & Martín-Duque, J. F. (2012). Land transformation by humans: A review. GSA Today, 22, 4–10.

    Article  Google Scholar 

  • Ignatius, A. R., & Rasmussen, T. C. (2016). Small reservoir effects on headwater water quality in the rural-urban fringe, Georgia Piedmont, USA. Journal of Hydrology: Regional Studies, 8, 145–161. https://doi.org/10.1016/j.ejrh.2016.08.005

    Article  Google Scholar 

  • Iwashita, M., & Shimamura, T. (2003). Long-term variations in dissolved trace elements in the Sagami River and its tributaries (upstream area), Japan. The Science of the Total Environment, 312, 167–179. https://doi.org/10.1016/S0048-9697(03)00251-1

    Article  CAS  Google Scholar 

  • Jain, C. K., & Ram, D. (1997). Adsorption of metal ions on bed sediments. Hydrological Sciences Journal, 42, 713–723. https://doi.org/10.1080/02626669709492068

    Article  CAS  Google Scholar 

  • Khatri, N., & Tyagi, S. (2015). Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 8, 23–39. https://doi.org/10.1080/21553769.2014.933716

    Article  CAS  Google Scholar 

  • Konrad, C. P., & Munn, M. D. (2016). Integrating seasonal information on nutrients and benthic algal biomass into stream water quality monitoring. Journal of the American Water Resources Association, 52, 1223–1237. https://doi.org/10.1111/1752-1688.12451

    Article  CAS  Google Scholar 

  • Lasagna, M., De Luca, D. A., Debernardi, L., & Clemente, P. (2013). Effect of the dilution process on the attenuation of contaminants in aquifers. Environmental Earth Sciences, 70, 2767–2784. https://doi.org/10.1007/s12665-013-2336-9

    Article  Google Scholar 

  • Levi, P. S., & McIntyre, P. B. (2020). Ecosystem responses to channel restoration decline with stream size in urban river networks. Ecological Applications, 30, c02107. https://doi.org/10.1002/eap.2107

    Article  Google Scholar 

  • Maltby, L., Forrow, D. M., Boxall, A. B. A., Calow, P., & Betton, C. I. (1995). The effects of motorway runoff on freshwater ecosystems: 1. Field study. Environmental Toxicology and Chemistry, 14, 1079–1092. https://doi.org/10.1002/etc.5620140620

  • Meyer, J. L. (2010). Urban aquatic ecosystems. In G. E. Likens (Ed.), River ecosystem ecology: a global perspective. A derivative of encyclopedia of inland waters (pp. 259–269). Elsevier, Academic Press

  • Nusch, E. A. (1980). Comparison of different methods for chlorophyll and phaeopigment determination. Archives Für Hydrobiology, 14, 14–36.

    CAS  Google Scholar 

  • Palinkaš Strmić, S., Dogančić, D., Palinkaš, L. A., Obhođaš, J., Kampić, Š, Kuzmanović, M., & Martinić, M. (2013). Environmental geochemistry of the polymetallic ore deposits: case studies from the Rude and the Sv. Jakob historical mining sites. NW Croatia Geologia Croatica, 66, 129–142. https://doi.org/10.4154/GC.2013.10

    Article  Google Scholar 

  • Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology and Systematics, 32, 333–365.

    Article  Google Scholar 

  • Pekárová, P., & Pekár, J. (1996). The impact of land use on stream water quality in Slovakia. Journal of Hydrology, 180, 33–350. https://doi.org/10.1016/0022-1694(95)02882-X

    Article  Google Scholar 

  • Pickett, S. T. A., Cadenasso, M. L., Grove, J. M., Boone, C. G., Groffman, P. M., Irwin, E., Kaushal, S. S., Marshall, V., McGrath, B. P., Nilon, C. H., Pouyat, R. V., Szlavecz, K., Troy, A., & Warren, P. (2011). Urban ecological systems: Scientific foundations and a decade of progress. Journal of Environmental Management, 92, 331–362. https://doi.org/10.1016/j.jenvman.2010.08.022

    Article  CAS  Google Scholar 

  • Pišl, Z., Dekanić, S., Španić, R., Knežević, K., & Kruljac, A. (2015). Regulation of Črnomerec stream and its environs. IRES

  • Price, E. L. (2017). Influence of catchment urbanisation on the consumption patterns and structure of temperate, low-order stream food webs. MSc thesis, Queen Mary University of London: School of Biological & Chemical Sciences

  • Price, S. J., Snodgrass, J. W., & Dorcas, M. E. (2014). Managing aquatic environments for wildlife in urban areas. In R. A. McCleery, C. E. Moorman, & M. N. Peterson (Eds.), Urban wildlife conservation: theory and practice (pp. 361–388). Springer Science+Business Media LLC.

    Google Scholar 

  • Reimann, C., Arnoldussen, A., Boyd, R., Finne, T. E., Nordgulen, Ø., Volden, T., & Englmaier, P. (2006). The influence of a city on element contents of a terrestrial moss (Hylocomium splendens). Science of the Total Environment, 369, 419–432. https://doi.org/10.1016/j.scitotenv.2006.04.026

    Article  CAS  Google Scholar 

  • Reimann, C., Finne, T. E., Nordgulen, Ø., Sæther, O. M., Arnoldussen, A., & Banks, D. (2009). The influence of geology and land-use on inorganic stream water quality in the Oslo region, Norway. Applied Geochemistry, 24, 1862–1874. https://doi.org/10.1016/j.apgeochem.2009.06.007

    Article  CAS  Google Scholar 

  • Roy, A. H., Dybas, A. L., Fritz, K. M., & Lubbers, H. R. (2009). Urbanization affects the extent and hydrologic permanence of headwater streams in a midwestern US metropolitan area. Journal of the North American Benthological Society, 28, 911–928. https://doi.org/10.1899/08-178.1

    Article  Google Scholar 

  • Sremac, J., Velić, J., Bošnjak, M., Velić, I., Kudrnovski, D., & Troskot-Čorbić, T. (2018). Depositional model, pebble provenance and possible reservoir potential of cretaceous conglomerates: Example from the southern slope of Medvednica Mt. (Northern Croatia) Geosciences, 8, 456. https://doi.org/10.3390/geosciences8120456

    Article  CAS  Google Scholar 

  • Szita, R., Horváth, A., Winkler, D., Kalicz, P., Gribovszki, Z., & Csáki, P. (2019). A complex urban ecological investigation in a mid-sized Hungarian city – SITE assessment and monitoring of a liveable urban area, PART 1: Water quality measurement. Journal of Environmental Management, 247, 78–87. https://doi.org/10.1016/j.jenvman.2019.06.063

    Article  CAS  Google Scholar 

  • Šikić, K. (1995). Mt. Medvednica guide book. Institut za geološka istraživanja

  • Tong, S. T., & Chen, W. (2002). Modeling the relationship between land use and surface water quality. Journal of Environmental Management, 66, 377–393. https://doi.org/10.1006/jema.2002.0593

    Article  Google Scholar 

  • Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32, 3581–3592. https://doi.org/10.1016/S0043-1354(98)00138-9

    Article  CAS  Google Scholar 

  • Vitousek, P. M., Aber, J., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., & Tilman, G. D. (1997). Human alteration of the global nitrogen cycle: Causes and consequences. Ecological Applications, 7, 737–750. https://doi.org/10.2307/2269431

    Article  Google Scholar 

  • Walsh, C. J., Roy, A. H., Feminella, J. W., Cottingham, P. D., Groffman, P. M., & Morgan, R. P. (2005). The urban stream syndrome: Current knowledge and the search for a cure. Journal of the North American Benthological Society, 24, 706–723.

    Article  Google Scholar 

  • Zakharova, J., Pouran, H., Bridgeman, J., Wheatley, A., & Arif, M. (2020). Understanding metal concentration and speciation in motorway runoff. Environmental Technology, 4, 1–13. https://doi.org/10.1080/09593330.2020.1850874

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was conducted as part of the project “Urban stream ecology in Zagreb, Croatia: a pilot project”, funded by the Croatian Academy of Sciences and Arts (CASA). The financial support of the Ministry of Science and Education of the Republic of Croatia for institutional support of the Laboratory for Biological Effects of Metals is also acknowledged. The authors also thank the Meteorological and Hydrological Service of the Republic of Croatia for the valuable contribution to the discussion by providing information on stream water levels and water discharges and Ivan Tekić for designing the map of the study area.

Funding

This study was carried out within the project “Urban stream ecology in Zagreb, Croatia: a pilot project”, financed by Croatian Academy of Sciences and Arts (CASA). The financial support of the Ministry of Science and Education of the Republic of Croatia for institutional funding of the Laboratory for Biological Effects of Metals is also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Mirela Sertić Perić. Methodology: Mirela Sertić Perić, Zrinka Dragun, Vlatka Filipović Marijić. Formal analysis and (field/laboratory) investigation: Mirela Sertić Perić, Marta Mikulčić, Tvrtko Dražina, Zrinka Dragun, Renata Matoničkin Kepčija. Writing — original draft preparation: Zrinka Dragun, Mirela Sertić Perić. Writing — review and editing: Renata Matoničkin Kepčija, Marta Mikulčić, Vlatka Filipović Marijić, Tvrtko Dražina. Funding acquisition: Mirela Sertić Perić.

Corresponding author

Correspondence to Mirela Sertić Perić.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragun, Z., Perić, M.S., Mikulčić, M. et al. Temperate Urban Streams as Summer-Critical Ecosystems Regarding Metal Contamination. Water Air Soil Pollut 233, 314 (2022). https://doi.org/10.1007/s11270-022-05774-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05774-8

Keywords

Navigation