Skip to main content
Log in

Heavy Metal Phytoremediation Potential of Vetiver Grass and Indian Mustard Update on Enhancements and Research Opportunities

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Heavy metal pollution in the environment compromises environmental quality and human health. Phytoremediation is an innovative, green, and affordable technique that uses plants for the removal of contaminants from soil and water. Finding suitable plants that can adequately remove heavy metals from both soil and water has been a research hotspot in recent years, and there has been a rapid development in research on the use of high biomass producing crops for this purpose. Vetiver grass and Indian mustard have emerged as plants that are effective for phytoremediation and can serve other purposes during and after their use in phytoremediation. These plants are applicable in many areas because they can tolerate varied climatic conditions, thrive on degraded lands and contaminated water bodies, are easy to cultivate, and produce high biomass. This review article evaluates the phytoremediation potential of vetiver grass and Indian mustard by providing a synthesis of studies that have investigated their use for this purpose. The review considered research articles from the past 21 years and highlights the status and possible advancements in the efficient use of these plants for the remediation of heavy metal–contaminated sites. This work is of importance because phytoremediation is still undergoing immense research to promote its applicability and acceptability. Thus, it gives information on two important plants that are very useful for phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within this published article.

Code Availability

Not applicable.

References

  • Aibibu, N., Liu, Y., Zeng, G., Wang, X., Chen, B., Song, H., & Xu, L. (2010). Cadmium accumulation in Vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresource Technology, 101, 6297–6303. https://doi.org/10.1016/j.biortech.2010.03.028

    Article  CAS  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91(7), 869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

    Article  CAS  Google Scholar 

  • Álvarez-López, V., Prieto-Fernández, A., Janssen, J., Herzig, R., Vangronsveld, J., & Kidd, P. S. (2016). Inoculation methods using Rhodococcuserythropolis strain P30 affects bacterial assisted phytoextraction capacity of Nicotianatabacum. International Journal of Phytoremediation, 18(4), 406–415. https://doi.org/10.1080/15226514.2015.1109600

    Article  CAS  Google Scholar 

  • Andra, S. S., Datta, R., Sarkar, D., Saminathan, S. K., Mullens, C. P., & Bach, S. B. (2009). Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry. Environmental Pollution, 157(7), 2173–2183. https://doi.org/10.1016/j.envpol.2009.02.014

    Article  CAS  Google Scholar 

  • Angelova, V. R., Ivanova, R. V., Ivanov, K. I., Perifanova-Nemska, M. N., & Uzunova, G. I. (2016). Potential of sunflower (Helianthus annuus L.) for phytoremediation of soils contaminated with heavy metals. World J. Sci. Eng. Technol, 10(9), 1–8.

    Google Scholar 

  • Angelova V, (2018). Phytoremediation potential of enhanced tobacco in soil contaminated with heavy metals. Recent Advances in Information Technology, Tourism, Economics, Management and Agriculture, p.1049. https://doi.org/10.31410/itema.2018.1049.

  • Ansari, M. K. A., Oztetik, E., Ahmad, A., Umar, S., Iqbal, M., & Owens, G. (2013). Identification of the phytoremediation potential of Indian mustard genotypes for copper evaluated from a hydroponic experiment. CLEAN–Soil, Air, Water, 41(8), 789–796. https://doi.org/10.1002/clen.201200262

    Article  CAS  Google Scholar 

  • Ansari, M. K. A., Ahmad, A., Umar, S., Iqbal, M., Zia, M. H., Husen, A., & Owens, G. (2021). Suitability of Indian mustard genotypes for phytoremediation of mercury-contaminated sites. South African Journal of Botany, 142, 12–18. https://doi.org/10.1016/j.sajb.2021.05.011

    Article  CAS  Google Scholar 

  • Antiochia, R., Campanella, L., Ghezzi, P., & Movassaghi, K. (2007). The use of vetiver for remediation of heavy metal soil contamination. Analytical Biochemistry, 388, 947–956. https://doi.org/10.1007/s00216-007-1268-1

    Article  CAS  Google Scholar 

  • Baker, A. J., & Brooks, R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery, 1(2), 81–126.

    CAS  Google Scholar 

  • Banerjee, R., Goswami, P., Pathak, K., & Mukherjee, A. (2016). Vetiver grass: An environment clean-up tool for heavy metal contaminated iron ore mine-soil. Ecological Engineering, 90, 25–34. https://doi.org/10.1016/j.ecoleng.2016.01.027

    Article  Google Scholar 

  • Bañuelos, G., Terry, N., LeDuc, D. L., Pilon-Smits, E. A., & Mackey, B. (2005). Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environmental Science & Technology, 39(6), 1771–1777. https://doi.org/10.1021/es049035f

    Article  CAS  Google Scholar 

  • Cameselle, C., & Gouveia, S. (2019). Phytoremediation of mixed contaminated soil enhanced with electric current. Journal of Hazardous Materials, 361, 95–102. https://doi.org/10.1016/j.seppur.2011.02.016

    Article  CAS  Google Scholar 

  • Cang, L., Wang, Q. Y., Zhou, D. M., & Xu, H. (2011). Effects of electrokinetic-assisted phytoremediation of a multiple-metal contaminated soil on soil metal bioavailability and uptake by Indian mustard. Separation and Purification Technology, 79(2), 246–253. https://doi.org/10.1016/j.seppur.2011.02.016

    Article  CAS  Google Scholar 

  • Chaudhry, H., Nisar, N., Mehmood, S., Iqbal, M., Nazir, A., & Yasir, M. (2020). Indian Mustard Brassica juncea efficiency for the accumulation, tolerance and translocation of zinc from metal contaminated soil. Biocatalysis and Agricultural Biotechnology, 23, 101489. https://doi.org/10.1016/j.bcab.2019.101489

    Article  Google Scholar 

  • Chen, Y., Shen, Z., & Li, X. (2004). The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Applied Geochemistry, 19(10), 1553–1565. https://doi.org/10.1016/j.apgeochem.2004.02.003

    Article  CAS  Google Scholar 

  • Chen, S., Han, X., Fang, J., Lu, Z., Qiu, W., Liu, M., San, J., Jiang, J., & Zhuo, R. (2017). Sedum alfredii SaNramp6 metal transporter contributes to cadmium accumulation in transgenic Arabidopsis thaliana. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-13463-4

    Article  CAS  Google Scholar 

  • Chen, L., Long, C., Wang, D., & Yang, J. (2020). Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators. Chemosphere, 242, 125112. https://doi.org/10.1016/j.chemosphere.2019.125112

    Article  CAS  Google Scholar 

  • Chigbo, C., Batty, L., & Bartlett, R. (2013). Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper–pyrene co-contaminated soil. Chemosphere, 90(10), 2542–2548. https://doi.org/10.1016/j.chemosphere.2012.11.007

    Article  CAS  Google Scholar 

  • Chintani, Y. S., Butarbutar, E. S., Nugroho, A. P., & Sembiring, T. (2021). Uptake and release of chromium and nickel by Vetiver grass (Chrysopogon zizanioides (L.) Roberty). SN Applied Sciences, 3(3), 1–13.

    Article  Google Scholar 

  • Chiu, K. K., Ye, Z. H., & Wong, M. H. (2005). Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere, 60(10), 1365–1375. https://doi.org/10.1016/j.chemosphere.2005.02.035

    Article  CAS  Google Scholar 

  • Chiu, K. K., Ye, Z. H., & Wong, M. H. (2006). Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: A greenhouse study. Bioresource Technol, 97, 158–170. https://doi.org/10.1016/j.biortech.2005.01.038

    Article  CAS  Google Scholar 

  • Clemente, R., Walker, D. J., & Bernal, M. P. (2005). Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): The effect of soil amendments. Environmental Pollution, 138(1), 46–58. https://doi.org/10.1016/j.envpol.2005.02.019

    Article  CAS  Google Scholar 

  • Daghan, H., Arslan, M., Uygur, V., & Koleli, N. (2013). Transformation of tobacco with ScMTII gene-enhanced Cadmium and Zinc accumulation. CLEAN–Soil, Air, Water, 41(5), 503–509. https://doi.org/10.1002/clen.201200298

    Article  CAS  Google Scholar 

  • Danh, L. T., Truong, P., Mammucari, R., Tran, T., & Foster, N. (2009). Vetiver grass, Vetiveria zizanioides: A choice plant for phytoremediation of heavy metals and organic wastes. International Journal of Phytoremediation, 11(8), 664–691. https://doi.org/10.1080/15226510902787302

    Article  CAS  Google Scholar 

  • Diwan, H., Ahmad, A., & Iqbal, M. (2008). Genotypic variation in the phytoremediation potential of Indian mustard for chromium. Environmental Management, 41(5), 734–741. https://doi.org/10.1007/s00267-007-9020-3

    Article  Google Scholar 

  • Fornes, F., García-de-la-Fuente, R., Belda, R. M., & Abad, M. (2009). ‘Alperujo’compost amendment of contaminated calcareous and acidic soils: Effects on growth and trace element uptake by five Brassica species. Bioresource Technology, 100(17), 3982–3990. https://doi.org/10.1016/j.biortech.2009.03.050

    Article  CAS  Google Scholar 

  • Fryzova R, Pohanka M, Martinkova P, Cihlarova H, Brtnicky M, Hladky J., & Kynicky J (2017). Oxidative stress and heavy metals in plants. In Reviews of Environmental Contamination and Toxicology Volume 245 (pp. 129–156). Springer, Cham.

  • Fulekar M.H, Singh A., & Bhaduri A.M (2009). Genetic engineering strategies for enhancing phytoremediation of heavy metals. African Journal of Biotechnology, 8(4).

  • Gautam, M., & Agrawal, M. (2017). Phytoremediation of metals using vetiver (Chrysopogon zizanioides (L.) Roberty) grown under different levels of red mud in sludge amended soil. Journal of Geochemical Exploration, 182, 218–227. https://doi.org/10.1016/j.gexplo.2017.03.003

    Article  CAS  Google Scholar 

  • Gautam, M., Pandey, D., & Agrawal, M. (2017). Phytoremediation of metals using lemongrass (Cymbopogon citratus (DC) Stapf.) grown under different levels of red mud in soil amended with biowastes. International journal of phytoremediation, 19(6), 555–562. https://doi.org/10.1080/15226514.2016.1267701

    Article  CAS  Google Scholar 

  • Gill, R. T., Harbottle, M. J., Smith, J. W. N., & Thornton, S. F. (2014). Electrokinetic-enhanced bioremediation of organic contaminants: A review of processes and environmental applications. Chemosphere, 107, 31–42. https://doi.org/10.1016/j.chemosphere.2014.03.019

    Article  CAS  Google Scholar 

  • Goswami, S., & Das, S. (2015). A study on cadmium phytoremediation potential of Indian mustard. Brassica Juncea. International Journal of Phytoremediation, 17(6), 583–588. https://doi.org/10.1080/15226514.2014.935289

    Article  CAS  Google Scholar 

  • Gravand, F., Rahnavard, A., & Pour, G. M. (2021). Investigation of vetiver grass capability in phytoremediation of contaminated soils with heavy metals (Pb, Cd, Mn, and Ni). Soil and Sediment Contamination: An International Journal, 30(2), 163–186. https://doi.org/10.1080/15320383.2020.1819959

    Article  CAS  Google Scholar 

  • Graziani, N., Salazar, M. J., Pignata, M. L., & Rodriguez, J. H. (2016). Assessment of the root system of Brassica juncea (L.) czern And Bidenspilosa L. exposed to lead polluted soils using rhizobox systems. International journal of phytoremediation, 18(3), 235–244. https://doi.org/10.1080/15226514.2015.1078770

    Article  CAS  Google Scholar 

  • Hasan, S. N. M. S., Kusin, F. M., Lee, A. L. S., Ukang, T. A., Yusuff, F. M., & Ibrahim, Z. Z. (2017). Performance of vetiver grass (Vetiveria zizanioides) for phytoremediation of contaminated water. In MATEC web of conferences (Vol. 103, p. 06003). EDP Sciences. https://doi.org/10.1051/matecconf/201710306003

  • Huang, H., Li, T., Gupta, D. K., He, Z., Yang, X. E., Ni, B., & Li, M. (2012). Heavy metal phytoextraction by Sedum alfredii is affected by continual clipping and phosphorus fertilization amendment. Journal of Environmental Sciences, 24(3), 376–386. https://doi.org/10.1016/S1001-0742(11)60776-6

    Article  CAS  Google Scholar 

  • Huysen, T., Terry, N., & Pilon-Smits, E. A. H. (2004). Exploring the selenium phytoremediation potential of transgenic Indian mustard overexpressing ATP sulfurylase or cystathionine-γ-synthase. International Journal of Phytoremediation, 6(2), 111–118. https://doi.org/10.1080/16226510490454786

    Article  CAS  Google Scholar 

  • Iloms, E., Ololade, O. O., Ogola, H. J., & Selvarajan, R. (2020). Investigating industrial effluent impact on municipal wastewater treatment plant in Vaal, South Africa. International Journal of Environmental Research and Public Health, 17(3), 1096. https://doi.org/10.3390/ijerph17031096

    Article  CAS  Google Scholar 

  • Jayashree, S., Rathinamala, J., & Lakshmanaperumalsamy, P. (2011). Determination of heavy metal removal efficiency of Chrysopogon zizanioides (Vetiver) using textile wastewater contaminated soil. Journal of Environmental Science and Technology, 4(5), 543–551.

    Article  CAS  Google Scholar 

  • Jeelani, N., Yang, W., Zhu, H. L., & An, S. (2020). Phytoremediation for co-contaminated soils of cadmium and pyrene using Phragmites australis (common reed). International Journal of Phytoremediation, 22(13), 1385–1395. https://doi.org/10.1080/15226514.2020.1780411

    Article  CAS  Google Scholar 

  • Ju W, Liu L, Jin X, Duan C, Cui Y, Wang J, Ma D, Zhao W, Wang Y., & Fang L (2020). Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Chemosphere, p.126724. https://doi.org/10.1016/j.chemosphere.2020.126724

  • Kamusoko, R., & Jingura, R. M. (2017). Utility of Jatropha for phytoremediation of heavy metals and emerging contaminants of water resources: a review. CLEAN–Soil, Air, Water, 45(11), 1700444. https://doi.org/10.1002/clen.201700444

    Article  CAS  Google Scholar 

  • Keeling, S. M., Stewart, R. B., Anderson, C. W. N., & Robinson, B. H. (2003). Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: Implications for polymetallic phytomining and phytoremediation. International Journal of Phytoremediation, 5(3), 235–244. https://doi.org/10.1080/713779223

    Article  CAS  Google Scholar 

  • Khan, I., Ahmad, A., & Iqbal, M. (2009). Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotoxicology and Environmental Safety, 72(2), 626–634.

    Article  CAS  Google Scholar 

  • Kidd, P., Mench, M., Álvarez-López, V., Bert, V., Dimitriou, I., Friesl-Hanl, W., Herzig, R., Olga Janssen, J., Kolbas, A., Müller, I., & Neu, S. (2015). Agronomic practices for improving gentle remediation of trace element-contaminated soils. International Journal of Phytoremediation, 17(11), 1005–1037. https://doi.org/10.1080/15226514.2014.1003788

    Article  CAS  Google Scholar 

  • Kiiskila, J. D., Sarkar, D., Panja, S., Sahi, S. V., & Datta, R. (2019). Remediation of acid mine drainage-impacted water by vetiver grass (Chrysopogon zizanioides): A multiscale long-term study. Ecological Engineering, 129, 97–108. https://doi.org/10.1016/j.ecoleng.2019.01.018

    Article  Google Scholar 

  • Kim, K. R., Owens, G., & Kwon, S. L. (2010). Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: A rhizobox study. Journal of Environmental Sciences, 22(1), 98–105. https://doi.org/10.1016/S1001-0742(09)60080-2

    Article  CAS  Google Scholar 

  • Lai, H. Y., & Chen, Z. S. (2004). Effect of EDTA on solubility of cadmium, zinc and lead and their uptake by rainbow pink and vetiver grass. Chemosphere, 55, 421–430. https://doi.org/10.1016/j.chemosphere.2003.11.009

    Article  CAS  Google Scholar 

  • Li, J., Zhang, J., Larson, S. L., Ballard, J. H., Guo, K., Arslan, Z., Ma, Y., Waggoner, C. A., White, J. R., & Han, F. X. (2019). Electrokinetic-enhanced phytoremediation of uranium-contaminated soil using sunflower and Indian mustard. International Journal of Phytoremediation, 21(12), 1197–1204. https://doi.org/10.1080/15226514.2019.1612847

    Article  CAS  Google Scholar 

  • Liphadzi, M. S., & Kirkham, M. B. (2006). Availability and plant uptake of heavy metals in EDTA-assisted phytoremediation of soil and composted biosolids. South African Journal of Botany, 72(3), 391–397. https://doi.org/10.1016/j.sajb.2005.10.010

    Article  CAS  Google Scholar 

  • Liu, X., Wang, Z., Bai, H., Zhang, S., Mu, L., & Peng, L. (2020). Characteristics and health risk assessments of heavy metals in PM 2.5 in Taiyuan and Yuci college tow, China. Air Quality, Atmosphere & Health, 13(8), 909–919. https://doi.org/10.1007/s11869-020-00860-4

    Article  CAS  Google Scholar 

  • Luo, J., He, W., Qi, S., Wu, J., & Gu, X. S. (2020). A novel phytoremediation method assisted by magnetized water to decontaminate soil Cd based on harvesting senescent and dead leaves of Festucaarundinacea. Journal of Hazardous Materials, 383, 121115. https://doi.org/10.1016/j.jhazmat.2019.121115

    Article  CAS  Google Scholar 

  • Ma, Y., Rajkumar, M., & Freitas, H. (2009). Inoculation of plant growth promoting bacterium Achromobacterxylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. Journal of Environmental Management, 90(2), 831–837. https://doi.org/10.1016/j.jenvman.2008.01.014

    Article  Google Scholar 

  • Masindi, V., & Muedi, K. L. (2018). Environmental contamination by heavy metals. Heavy Metals, 10, 115–132.

    Google Scholar 

  • Mbangi, A., Muchaonyerwa, P., & Zengeni, R. (2018). Accumulation of multiple heavy metals in plants grown on soil treated with sewage sludge for more than 50 years presents health risks and an opportunity for phyto-remediation. Water SA, 44(4), 569–576.

    CAS  Google Scholar 

  • Meyers, D. E., Auchterlonie, G. J., Webb, R. I., & Wood, B. (2008). Uptake and localisation of lead in the root system of Brassica juncea. Environmental Pollution, 153(2), 323–332. https://doi.org/10.1016/j.envpol.2007.08.029

    Article  CAS  Google Scholar 

  • Mhalappa, N. J., Mohan, V. K., & Puranik, P. R. (2013). Phytoremediation of metal contaminated soils with special reference to Brassica juncea (l.) czern Macrotylomauniflorum lam verdc. (Dolichosbiflorus) and Medicagosativa. Trends in Biomedical Research, 2(2), 1–19.

    Google Scholar 

  • Minisha, T. M., Shah, I. K., Varghese, G. K., & Kaushal, R. K. (2020). Application of Aztec marigold (Tageteserecta L.) for phytoremediation of heavy metal polluted lateritic soil. Environmental Chemistry and Ecotoxicology. https://doi.org/10.1016/j.enceco.2020.10.007

    Article  Google Scholar 

  • Mohamed, A. A., Castagna, A., Ranieri, A., & di Toppi, L. S. (2012). Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiology and Biochemistry, 57, 15–22. https://doi.org/10.1016/j.plaphy.2012.05.002

    Article  CAS  Google Scholar 

  • Mukhtar, S. A. I. M. A., Bhatti, H. N., Khalid, M., Haq, M. A. U., & Shahzad, S. M. (2010). Potential of sunflower (Helianthus annuus L.) for phytoremediation of nickel (Ni) and lead (Pb) contaminated water. Pakistan Journal of Botany, 42(6), 4017–4026.

    CAS  Google Scholar 

  • Nagata, T., Kiyono, M., & Pan-Hou, H. (2006). Engineering expression of bacterial polyphosphate kinase in tobacco for mercury remediation. Applied Microbiology and Biotechnology, 72(4), 777–782. https://doi.org/10.1007/s00253-006-0336-3

    Article  CAS  Google Scholar 

  • Napoli, M., Cecchi, S., Grassi, C., Baldi, A., Zanchi, C. A., & Orlandini, S. (2019). Phytoextraction of copper from a contaminated soil using arable and vegetable crops. Chemosphere, 219, 122–129. https://doi.org/10.1016/j.chemosphere.2018.12.017

    Article  CAS  Google Scholar 

  • Nedjimi, B. (2021). Phytoremediation: A sustainable environmental technology for heavy metals decontamination. SN Applied Sciences, 3(3), 1–19. https://doi.org/10.1007/s42452-021-04301-4

    Article  CAS  Google Scholar 

  • Nemutandani, T., Dutertre, D., Chimuka, L., Cukrowska, E., & Tutu, H. (2006). The potential of Berkheya coddii for phytoextraction of nickel, platinum, and palladium contaminated sites. Toxicological & Environmental Chemistry, 88(2), 175–185. https://doi.org/10.1080/02772240600585842

    Article  CAS  Google Scholar 

  • Ng, C. C., Boyce, A. N., Rahman, M. M., & Abas, M. R. (2016). Effects of different soil amendments on mixed heavy metals contamination in Vetiver grass. Bulletin of environmental contamination and toxicology, 97(5), 695–701. https://doi.org/10.1007/s00128-016-1921-5

    Article  CAS  Google Scholar 

  • Otunola B.O., & Ololade O.O (2020). A review on the application of clay minerals as heavy metal adsorbents for remediation purposes. Environmental Technology & Innovation, p.100692. https://doi.org/10.1016/j.eti.2020.100692

  • Patra, D. K., Pradhan, C., & Patra, H. K. (2018). Chelate based phytoremediation study for attenuation of chromium toxicity stress using lemongrass: Cymbopogon flexuosus (nees ex steud.) W. Watson. International journal of phytoremediation, 20(13), 1324–1329. https://doi.org/10.1080/15226514.2018.1488812

    Article  CAS  Google Scholar 

  • Prasad, M. N., & Strzalka, K. (2013). Physiology and biochemistry of metal toxicity and tolerance in plants. Springer Science & Business Media.

  • Qadir, S., Qureshi, M. I., Javed, S., & Abdin, M. Z. (2004). Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Science, 167(5), 1171–1181. https://doi.org/10.1016/j.plantsci.2004.06.018

    Article  CAS  Google Scholar 

  • Raj, D., Kumar, A., & Maiti, S. K. (2020). Brassica juncea (L.) Czern.(Indian mustard): A putative plant species to facilitate the phytoremediation of mercury contaminated soils. International Journal of Phytoremediation, 22(7), 733–744. https://doi.org/10.1080/15226514.2019.1708861

    Article  CAS  Google Scholar 

  • Rathore, S. S., Shekhawat, K., & Dass. (2019). Phytoremediation mechanism in Indian mustard (Brassicqa juncea) and its enhancement through agronomic interventions. Proceedings of the National Academy of Sciences, 89, 419–427. https://doi.org/10.1007/s40011-017-0885-5

    Article  CAS  Google Scholar 

  • Roongtanakiat, N., Tangruangkiat, S., & Meesat, R. (2007). Utilization of vetiver grass (Vetiveria zizanioides) for removal of heavy metals from industrial wastewaters. Science Asia, 33(4), 397–403. https://doi.org/10.2306/scienceasia1513-1874.2007.33.397

    Article  CAS  Google Scholar 

  • Roychowdhury, R., Roy, M., Zaman, S., & Mitra, A. (2017). Bioaccumulation of heavy metals in Brassica juncea: An indicator species for phytoremediation. International Journal for Innovative Reasearch in Multidisciplinary Field, 3(9), 92–95.

    Google Scholar 

  • Sakakibara M, Watanabe A, Inoue M, Sano S., & Kaise T (2010). Phytoextraction and phytovolatilization of arsenic from As-contaminated soils by Pteris vittata. In Proceedings of the annual international conference on soils, sediments, water and energy (Vol. 12, No. 1, p. 26).

  • Salido, A. L., Hasty, K. L., Lim, J. M., & Butcher, D. J. (2003). Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pterisvittata) and Indian mustard (Brassica juncea). International Journal of Phytoremediation, 5(2), 89–103. https://doi.org/10.1080/713610173

    Article  CAS  Google Scholar 

  • Shahandeh, H., & Hossner, L. R. (2000). Plant screening for chromium phytoremediation. International Journal of Phytoremediation, 2(1), 31–51. https://doi.org/10.1080/15226510008500029

    Article  CAS  Google Scholar 

  • Sharma P, Pandey A.K, Udayan A., & Kumar S (2021). Role of microbial community and metal-binding proteins in phytoremediation of heavy metals from industrial wastewater. Bioresource Technology, p.124750. https://doi.org/10.1016/j.biortech.2021.124750

  • Shiyab, S., Chen, J., Han, F. X., Monts, D. L., Matta, F. B., Gu, M., & Masad, M. A. (2009). Mercury-induced oxidative stress in Indian mustard (Brassica juncea L.). Environmental Toxicology: An International Journal, 24(5), 462–471. https://doi.org/10.1002/tox.20450

    Article  CAS  Google Scholar 

  • Singh, S., Suvarna, S., Kiran, K., & Fulzele, P. (2017). Investigation of arsenic accumulation and biochemical response of in vitro developed Vetiveria zizanoides plants. Ecotoxicology and Environmental Safety, 145, 50–56. https://doi.org/10.1016/j.ecoenv.2017.07.013

    Article  CAS  Google Scholar 

  • Siyar, R., Ardejani, F. D., Farahbakhsh, M., Norouzi, P., Yavarzadeh, M., & Maghsoudy, S. (2020). Potential of vetiver grass for the phytoremediation of a real multi-contaminated soil, assisted by electrokinetic. Chemosphere, 246, 125802. https://doi.org/10.1016/j.chemosphere.2019.125802

    Article  CAS  Google Scholar 

  • Sridhar, B. M., Diehl, S. V., Han, F. X., Monts, D. L., & Su, Y. (2005). Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea). Environmental and Experimental Botany, 54(2), 131–141. https://doi.org/10.1016/j.envexpbot.2004.06.011

    Article  CAS  Google Scholar 

  • Suelee, A. L., Hasan, S. N. M. S., Kusin, F. M., Yusuff, F. M., & Ibrahim, Z. Z. (2017). Phytoremediation potential of vetiver grass (Vetiveria zizanioides) for treatment of metal-contaminated water. Water, Air, & Soil Pollution, 228(4), 158. https://doi.org/10.1007/s11270-017-3349-x

    Article  CAS  Google Scholar 

  • Tambunan J.A.M, Effendi H., & Krisanti M (2018). Phytoremediating Batik wastewater using vetiver Chrysopogon zizanioides (L). Polish Journal of Environmental Studies, 27(3).

  • Tang L, Hamid Y, Zehra A, Sahito Z.A, He Z, Beri W.T, Khan M.B., & Yang X (2020). Fava bean intercropping with Sedum alfredii inoculated with endophytes enhances phytoremediation of cadmium and lead co-contaminated field. Environmental Pollution, p.114861. https://doi.org/10.1016/j.envpol.2020.114861

  • Tangahu B.V, Sheikh Abdullah S.R, Basri H, Idris M, Anuar N., & Mukhlisin M (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011.https://doi.org/10.1155/2011/939161

  • Thwala, M., Klaine, S., & Musee, N. (2021). Exposure media and nanoparticle size influence on the fate, bioaccumulation, and toxicity of silver nanoparticles to higher plant Salvinia minima. Molecules, 26(8), 2305. https://doi.org/10.3390/molecules26082305

    Article  CAS  Google Scholar 

  • Truong P, Van T.T., & Pinners E (2008). Vetiver system applications technical reference manual. The Vetiver Network International, 89.

  • USEPA-United States Environmental Protection Agency (2014). https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf. Accessed 16 October 2020

  • Vaca R, Lugo J, Martinez R, Esteller M. V., & Zavaleta H (2011). Effects of sewage sludge and sewage sludge compost amendment on soil properties and Zea mays L. plants (heavy metals, quality and productivity). RevistaInternacional de ContaminaciónAmbiental, 27(4).

  • Vandenhove H (2006). Phytomanagement of radioactively contaminated sites. In Phytoremediation of metal-contaminated soils (pp. 191–228). Springer, Dordrecht. https://doi.org/10.1007/1-4020-4688-X_6

  • Vardhan, K. H., Kumar, P. S., & Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290, 111197. https://doi.org/10.1016/j.molliq.2019.111197

    Article  CAS  Google Scholar 

  • Vargas, C., Pérez-Esteban, J., Escolástico, C., Masaguer, A., & Moliner, A. (2016). Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids. Environmental Science and Pollution Research, 23(13), 13521–13530. https://doi.org/10.1007/s11356-016-6430-x

    Article  CAS  Google Scholar 

  • Wang, C., Wu, B., Jiang, K., & Zhou, J. (2018). Effects of different types of heavy metal pollution on functional traits of invasive redroot pigweed and native red amaranth. International Journal of Environmental Research, 12(4), 419–427. https://doi.org/10.1007/s41742-018-0101-3

    Article  CAS  Google Scholar 

  • Wilde, E. W., Brigmon, R. L., & Dunn, D. L. (2005). Phytoextraction of lead from firing range soil by Vetiver grass. Chemosphere, 61, 1451–1457. https://doi.org/10.1016/j.chemosphere.2005.04.059

    Article  CAS  Google Scholar 

  • Wu, Z. Z., Yang, J. Y., Zhang, Y. X., Wang, C. Q., Guo, S. S., & Yu, Y. Q. (2020). Growth responses, accumulation, translocation and distribution of vanadium in tobacco and its potential in phytoremediation. Ecotoxicology and Environmental Safety, 207, 111297. https://doi.org/10.1016/j.ecoenv.2020.111297

    Article  CAS  Google Scholar 

  • Wuana R.A., & Okieimen F.E (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecology, 2011.https://doi.org/10.5402/2011/402647

  • Xiao, Z., Zou, D., Zeng, X., Zhang, L., Liu, F., Wang, A., et al. (2020). Cadmium accumulation in oilseed rape is promoted by intercropping with faba bean and ryegrass. Ecotoxicology and Environmental Safety, 205, 111162.

    Article  CAS  Google Scholar 

  • Yan A, Wang Y, Tan S.N, Yusof M.L.M, Ghosh S., & Chen Z (2020). Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11.https://doi.org/10.3389/fpls.2020.00359

  • Yang, X. E., Long, X. X., Ye, H. B., He, Z. L., Calvert, D. V., & Stoffella, P. J. (2004). Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil, 259(1), 181–189. https://doi.org/10.1023/B:PLSO.0000020956.24027.f2

    Article  CAS  Google Scholar 

  • Yang, Y., Ge, Y., Tu, P., Zeng, H., Zhou, X., Zou, D., Wang, K., & Zeng, Q. (2019). Phytoextraction of Cd from a contaminated soil by tobacco and safe use of its metal-enriched biomass. Journal of Hazardous Materials, 363, 385–393. https://doi.org/10.1016/j.jhazmat.2018.09.093

    Article  CAS  Google Scholar 

  • Yang, W., Luo, L., Bostick, B. C., Wiita, E., Cheng, Y., & Shen, Y. (2021). Effect of combined arsenic and lead exposure on their uptake and translocation in Indian mustard. Environmental Pollution, 274, 116549. https://doi.org/10.1016/j.envpol.2021.116549

    Article  CAS  Google Scholar 

  • Ye, M., Sun, M., Liu, Z., Ni, N., Chen, Y., Gu, C., et al. (2014). Evaluation of enhanced soil washing process and phytoremediation with maize oil, carboxymethyl-β-cyclodextrin, and vetiver grass for the recovery of organochlorine pesticides and heavy metals from a pesticide factory site. Journal of Environmental Management, 141, 161–168.

    Article  CAS  Google Scholar 

  • Zhang, X., Gao, B., & Xia, H. (2014). Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass. Ecotoxicology and Environmental Safety, 106, 102–108. https://doi.org/10.1016/j.ecoenv.2014.04.025

    Article  CAS  Google Scholar 

  • Zhang, C., Tao, Y., Li, S., Ke, T., Wang, P., Wei, S., & Chen, L. (2020). Bioremediation of cadmium-trichlorfon co-contaminated soil by Indian mustard (Brassica juncea) associated with the trichlorfon-degrading microbe Aspergillus sydowii: Related physiological responses and soil enzyme activities. Ecotoxicology and Environmental Safety, 188, 109756. https://doi.org/10.1016/j.ecoenv.2019.109756

    Article  CAS  Google Scholar 

  • Zotiadis V., & Argyraki A (2013). Development of innovative environmental applications of attapulgite clay. Bulletin of the Geological Society of Greece, 47. https://doi.org/10.12681/bgsg.11139

Download references

Funding

Funding was provided by the Faculty of Natural and Agricultural Sciences Central Research Fund, University of the Free State.

Author information

Authors and Affiliations

Authors

Contributions

Beatrice Omonike Otunola, Makhosazana Aghoghovwia, Melusi Thwala, and Olusola Oluwayemisi Ololade contributed to the study conception. Study design, literature search, and data analysis were performed by Beatrice Omonike Otunola. The first draft of the manuscript was written by Beatrice Omonike Otunola. All authors revised and commented on previous versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to B. O. Otunola.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otunola, B.O., Aghoghovwia, M.P., Thwala, M. et al. Heavy Metal Phytoremediation Potential of Vetiver Grass and Indian Mustard Update on Enhancements and Research Opportunities. Water Air Soil Pollut 233, 154 (2022). https://doi.org/10.1007/s11270-022-05620-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05620-x

Keywords

Navigation