Skip to main content
Log in

The Performance of Aerobic Granular Sludge Under Different Aeration Strategies at Low Temperature

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Aeration strategy is an important factor for the formation and maintenance of aerobic granular sludge (AGS), but aeration is also the most energy-consuming part in the biological wastewater treatment system. In order to optimize the aeration strategy of AGS reactor at low temperature, short- and long-term effects of dissolved oxygen (DO) concentration and aeration intensity (AI) were investigated at 10 ℃ in this study. The results showed that the carbon and phosphorus removal performance of AGS exhibited high resistance to the short-term changes of DO and AI, while the nitrogen removal was greatly influenced. The optimum DO and AI were 4 mg/L and 0.25 cm/s, corresponding to 82.7% and 81.4% of total inorganic nitrogen removal efficiencies, respectively. Long-term operation experiment showed that the properties of AGS kept stable under 4 mg/L DO concentration, but the overgrowth of filamentous bacteria and reduction of extracellular polymeric substance under 0.25 cm/s AI led to a large amount of granule disintegration, which could not be recovered with the prolonged operation. These findings might provide guidance for the operation optimization of AGS system at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  • APHA (2005) Standard methods for the examination of water and wastewater. In, American Public Health Association, Washington, DC, New York.

  • Barr, J. J., Cook, A. E., & Bond, P. L. (2010). Granule formation mechanisms within an aerobic wastewater system for phosphorus removal. Applied and Environment Microbiology, 76(22), 7588–7597.

    Article  CAS  Google Scholar 

  • Beun, J. J., Loosdrecht, M. C. M., & v. and Heijnen J. J. (2000). Aerobic granulation. Water Science and Technology, 41, 41–48.

    Article  CAS  Google Scholar 

  • Burdon, J. (2001). Are the traditional concepts of the structures of humic substances realistic? Soil Science, 166, 752–769.

    Article  CAS  Google Scholar 

  • Campo, R., Corsino, S. F., Torregrossa, M., & Di Bella, G. (2018). The role of extracellular polymeric substances on aerobic granulation with stepwise increase of salinity. Separation and Purification Technology, 195, 12–20.

    Article  CAS  Google Scholar 

  • Carvalheira, M., Oehmen, A., Carvalho, G., Eusébio, M., & Reis, M. A. M. (2014). The impact of aeration on the competition between polyphosphate accumulating organisms and glycogen accumulating organisms. Water Research, 66, 296–307.

    Article  CAS  Google Scholar 

  • Castellanos, R. M., Dias, J. M. R., Dias, B. I., Dezotti, M., & Bassin, J. P. (2021). Effect of sludge age on aerobic granular sludge: Addressing nutrient removal performance and biomass stability. Process Safety and Environmental Protection, 149, 212–222.

    Article  CAS  Google Scholar 

  • Chen, Y., Lan, S., Wang, L., Dong, S., Zhou, H., Tan, Z., & Li, X. (2017). A review: Driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems. Chemosphere, 174, 173–182.

    Article  CAS  Google Scholar 

  • Chiu, Z. C., Chen, M. Y., Lee, D. J., Wang, C. H., & Lai, J. Y. (2007). Oxygen diffusion and consumption in active aerobic granules of heterogeneous structure. Applied Microbiology and Biotechnology, 75(3), 685–691.

    Article  CAS  Google Scholar 

  • de Sousa, R. S. L., Mendes, B. A., & R., Milen Firmino P. I. and Bezerra Dos Santos A. (2018). Aerobic granular sludge: Cultivation parameters and removal mechanisms. Bioresour Technol, 270, 678–688.

    Article  Google Scholar 

  • Frølund, B., Palmgren, R., Keiding, K., & Nielsen, P. H. (1996). Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research, 30, 1749–1758.

    Article  Google Scholar 

  • Franca, R. D. G., Pinheiro, H. M., van Loosdrecht, M. C. M., & Lourenco, N. D. (2018). Stability of aerobic granules during long-term bioreactor operation. Biotechnology Advances, 36(1), 228–246.

    Article  CAS  Google Scholar 

  • Gao, D. W., Liu, L., & Liang, H. (2013). Influence of aeration intensity on mature aerobic granules in sequencing batch reactor. Applied Microbiology and Biotechnology, 97(9), 4213–4219.

    Article  CAS  Google Scholar 

  • Garcia-Ochoa, F., & Gomez, E. (2009). Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnology Advances, 27(2), 153–176.

    Article  CAS  Google Scholar 

  • Gerhardt, P., Murray, R. G. E., Wood, W. A., & Krieg, N. R. (1994). Methods for general and molecular bacteriology. American Society for Microbiology.

    Google Scholar 

  • Guimarães, L. B., Mezzari, M. P., Daudt, G. C., & da Costa, R. H. R. (2017). Microbial pathways of nitrogen removal in aerobic granular sludge treating domestic wastewater. Journal of Chemical Technology & Biotechnology, 92(7), 1756–1765.

    Article  Google Scholar 

  • He, J., & Xu, J. (2018). The characteristics of heat-driven ammonium adsorption in aerobic granular sludge. Water Science and Technology, 78(7), 1466–1475.

    Article  CAS  Google Scholar 

  • He, Q., Chen, L., Zhang, S., Chen, R., & Wang, H. (2019). Hydrodynamic shear force shaped the microbial community and function in the aerobic granular sequencing batch reactors for low carbon to nitrogen (C/N) municipal wastewater treatment. Bioresource Technology, 271, 48–58.

    Article  CAS  Google Scholar 

  • He, Q., Chen, L., Zhang, S., Wang, L., Liang, J., Xia, W., Wang, H., & Zhou, J. (2018). Simultaneous nitrification, denitrification and phosphorus removal in aerobic granular sequencing batch reactors with high aeration intensity: Impact of aeration time. Bioresource Technology, 263, 214–222.

    Article  CAS  Google Scholar 

  • Lee, H., & Yun, Z. (2014). Comparison of biochemical characteristics between PAO and DPAO sludges. Journal of Environmental Sciences (china), 26(6), 1340–1347.

    Article  CAS  Google Scholar 

  • Li, X. Y., & Yang, S. F. (2007). Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Research, 41(5), 1022–1030.

    Article  CAS  Google Scholar 

  • Liu, Y., & Liu, Q. S. (2006). Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors. Biotechnology Advances, 24(1), 115–127.

    Article  CAS  Google Scholar 

  • Mosquera-Corral, A., de Kreuk, M. K., Heijnen, J. J., & van Loosdrecht, M. C. (2005). Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor. Water Research, 39(12), 2676–2686.

    Article  CAS  Google Scholar 

  • Muhammad, K. S. K. (2015). Studies on the interactions of Ca2+ and Mg2+ with EPS and their role in determining the physicochemical characteristics of granular sludges in SBR system. Process Biochem, 50, 966–972.

    Article  Google Scholar 

  • Nguyen, Quoc B., Wei, S., Armenta, M., Bucher, R., Sukapanpotharam, P., Stahl, D. A., Stensel, H. D., & Winkler, M.-K.H. (2021). Aerobic granular sludge: Impact of size distribution on nitrification capacity. Water Res, 188, 116445.

    Article  Google Scholar 

  • Ni, L., Li, D., Rong, S., Su, L., Zhou, W., Wang, P., Wang, C., Li, S., & Acharya, K. (2017). Characterization of extracellular polymeric substance (EPS) fractions produced by Microcystis aeruginosa under the stress of linoleic acid sustained-release microspheres. Environmental Science and Pollution Research, 24(26), 21091–21102.

    Article  CAS  Google Scholar 

  • Pronk, M., de Kreuk, M. K., de Bruin, B., Kamminga, P., Kleerebezem, R., & van Loosdrecht, M. C. (2015). Full scale performance of the aerobic granular sludge process for sewage treatment. Water Research, 84, 207–217.

    Article  CAS  Google Scholar 

  • Sadri Moghaddam, S., & AlaviMoghaddam, M. R. (2016). Aerobic granular sludge for dye biodegradation in a sequencing batch reactor with anaerobic/aerobic cycles. CLEAN - Soil, Air, Water, 44(4), 438–43.

    Article  CAS  Google Scholar 

  • Wang, J., Yang, H., Liu, X., Wang, J., & Chang, J. (2020). The impact of temperature and dissolved oxygen (DO) on the partial nitrification of immobilized fillers, and application in municipal wastewater. RSC Advances, 10, 37194–37201.

    Article  CAS  Google Scholar 

  • Wei, D., Li, M., Wang, X., Han, F., Li, L., Guo, J., Ai, L., Fang, L., Liu, L., Du, B., & Wei, Q. (2016). Extracellular polymeric substances for Zn (II) binding during its sorption process onto aerobic granular sludge. Journal of Hazardous Materials, 301, 407–415.

    Article  CAS  Google Scholar 

  • Winkler, M. K. H., Bassin, J. P., Kleerebezem, R., van der Lans, R. G. J. M., & van Loosdrecht, M. C. M. (2012). Temperature and salt effects on settling velocity in granular sludge technology. Water Research, 46(16), 5445–5451.

    Article  CAS  Google Scholar 

  • Xu, J., He, J., Wang, M., & Li, L. (2018). Cultivation and stable operation of aerobic granular sludge at low temperature by sieving out the batt-like sludge. Chemosphere, 211, 1219–1227.

    Article  CAS  Google Scholar 

  • Yang, S., & Yang, F. (2011). Nitrogen removal via short-cut simultaneous nitrification and denitrification in an intermittently aerated moving bed membrane bioreactor. Journal of Hazardous Materials, 195, 318–323.

    Article  CAS  Google Scholar 

  • Yuan, X., & Gao, D. (2010). Effect of dissolved oxygen on nitrogen removal and process control in aerobic granular sludge reactor. Journal of Hazardous Materials, 178(1–3), 1041–1045.

    Article  CAS  Google Scholar 

  • Zhu, L., Zhou, J., Yu, H., & Xu, X. (2015). Optimization of hydraulic shear parameters and reactor configuration in the aerobic granular sludge process. Environmental Technology, 36(13–16), 1605–1611.

    Article  CAS  Google Scholar 

  • Zitomer, D. H., Duran, M., Albert, R., & Guven, E. (2007). Thermophilic aerobic granular biomass for enhanced settleability. Water Research, 41(4), 819–825.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported financially by the Key Research and Development Program of Shandong Province (No. 2020CXGC011202) and the Natural Science Foundation of Shandong Province (No. ZR2021QE274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 128 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Ju, H., He, J. et al. The Performance of Aerobic Granular Sludge Under Different Aeration Strategies at Low Temperature. Water Air Soil Pollut 233, 43 (2022). https://doi.org/10.1007/s11270-022-05506-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05506-y

Keywords

Navigation