Skip to main content
Log in

Elimination of Benzophenone-1 in Water by High-Frequency Ultrasound

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Benzophenone-1 (BP1) has been classified as a potential endocrine disruptor due to its reported negative effect on different living beings. In addition, its presence in different water bodies has been detected. In this way, the ultrasonic removal of BP1 was studied considering the effects of the frequency, the power density, and the pollutant initial concentration. In general, results indicated that very high values of frequency and power density inhibit the pollutant removal. Two kinetic models were evaluated to describe BP1 initial degradation rate considering that the pollutant elimination could take place in the bulk solution and the bubble–liquid interfacial region. Experiments carried out under the presence of some radical scavengers showed that BP1 removal occurs mainly over the generated cavitation bubbles surface, and that HO• radicals could be the main species responsible for the pollutant elimination. Five degradation byproducts were identified, and a plausible reaction route was proposed. Finally, samples’ toxicity was analyzed considering changes in the Vibrio fischeri bacteria luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

All relevant data are included in the paper.

Code Availability

Not applicable.

References

  • Adewuyi, Y. G., & Oyenekan, B. A. (2007). Optimization of a sonochemical process using a novel reactor and Taguchi statistical experimental design methodology. Industrial & Engineering Chemistry Research, 46(2), 411–420.

    Article  CAS  Google Scholar 

  • Al-Hamadani, Y. A. J., Chu, K. H., Flora, J. R. V., Kim, D. H., Jang, M., Sohn, J., et al. (2016). Sonocatalytical degradation enhancement for ibuprofen and sulfamethoxazole in the presence of glass beads and single-walled carbon nanotubes. Ultrasonics Sonochemistry, 32, 440–448.

    Article  CAS  Google Scholar 

  • Camargo-Perea, A. L., Rubio-Clemente, A., & Peñuela, G. A. (2020). Use of ultrasound as an advanced oxidation process for the degradation of emerging pollutants in water. Water, 12(4).

  • Chen, D., Sharma, S.K., & Mudhoo, A. (Eds.). (2011). Handbook on Applications of Ultrasound: Sonochemistry for Sustainability (1st ed.). CRC Press. https://doi.org/10.1201/b11012

  • Chiha, M., Hamdaoui, O., Baup, S., & Gondrexon, N. (2011). Sonolytic degradation of endocrine disrupting chemical 4-cumylphenol in water. Ultrasonics Sonochemistry, 18(5), 943–950.

    Article  CAS  Google Scholar 

  • Chiha, M., Merouani, S., Hamdaoui, O., Baup, S., Gondrexon, N., & Pétrier, C. (2010). Modeling of ultrasonic degradation of non-volatile organic compounds by Langmuir-type kinetics. Ultrasonics Sonochemistry, 17(5), 773–782.

    Article  CAS  Google Scholar 

  • Chisvert, A., Benedé, J. L., & Salvador, A. (2018). Current trends on the determination of organic UV filters in environmental water samples based on microextraction techniques – A review. Analytica Chimica Acta, 1034, 22–38.

    Article  CAS  Google Scholar 

  • Doosti, M. R., Kargar, R., & Sayadi, M. H. (2012). Water treatment using ultrasonic assistance : A review. Ecology, 2(2), 96–110.

    CAS  Google Scholar 

  • Fent, K., Kunz, P. Y., & Gomez, E. (2008). UV filters in the aquatic environment induce hormonal effects and affect fertility and reproduction in fish. Chimia International Journal for Chemistry, 62(5), 368–375.

    Article  CAS  Google Scholar 

  • He, T., Tsui, M. M. P., Tan, C. J., Ng, K. Y., Guo, F. W., Wang, L. H., et al. (2019). Comparative toxicities of four benzophenone ultraviolet filters to two life stages of two coral species. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2018.10.148

    Article  Google Scholar 

  • In, S. J., Kim, S. H., Go, R. E., Hwang, K. A., & Choi, K. C. (2015). Benzophenone-1 and nonylphenol stimulated MCF-7 breast cancer growth by regulating cell cycle and metastasis-related genes via an estrogen receptor α-dependent pathway. Journal of Toxicology and Environmental Health - Part a: Current Issues, 78(8), 492–505. https://doi.org/10.1080/15287394.2015.1010464

    Article  CAS  Google Scholar 

  • Jennings, V. L. K., Rayner-Brandes, M. H., & Bird, D. J. (2001). Assessing chemical toxicity with the bioluminescent photobacterium (vibrio fischeri): A comparison of three commercial systems. Water Research, 35(14), 3448–3456. https://doi.org/10.1016/S0043-1354(01)00067-7

    Article  CAS  Google Scholar 

  • Kim, S. H., Hwang, K. A., Shim, S. M., & Choi, K. C. (2015). Growth and migration of LNCaP prostate cancer cells are promoted by triclosan and benzophenone-1 via an androgen receptor signaling pathway. Environmental Toxicology and Pharmacology, 39(2), 568–576. https://doi.org/10.1016/j.etap.2015.01.003

    Article  CAS  Google Scholar 

  • Kimura, T., Sakamoto, T., Leveque, J. M., Sohmiya, H., Fujita, M., Ikeda, S., & Ando, T. (1996). Standardization of ultrasonic power for sonochemical reaction. Ultrasonics Sonochemistry, 3(3), S157–S161.

    Article  CAS  Google Scholar 

  • Lado Ribeiro, A. R., Moreira, N. F. F., Li Puma, G., & Silva, A. M. T. (2019). Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chemical Engineering Journal, 363, 155–173. https://doi.org/10.1016/j.cej.2019.01.080

    Article  CAS  Google Scholar 

  • Lianou, A., Frontistis, Z., Chatzisymeon, E., Antonopoulou, M., Konstantinou, I., & Mantzavinos, D. (2018). Sonochemical oxidation of piroxicam drug: Effect of key operating parameters and degradation pathways. Journal of Chemical Technology and Biotechnology, 93(1), 28–34.

    Article  CAS  Google Scholar 

  • Liu, Q., Chen, Z., Wei, D., & Du, Y. (2014). Acute toxicity formation potential of benzophenone-type UV filters in chlorination disinfection process. Journal of Environmental Sciences, 26(2), 440–447. https://doi.org/10.1016/S1001-0742(13)60411-8

    Article  CAS  Google Scholar 

  • Mao, F., He, Y., & Gin, K. Y. H. (2020). Antioxidant responses in cyanobacterium Microcystis aeruginosa caused by two commonly used UV filters, benzophenone-1 and benzophenone-3, at environmentally relevant concentrations. Journal of Hazardous Materials, 396, 122587. https://doi.org/10.1016/j.jhazmat.2020.122587

    Article  CAS  Google Scholar 

  • Modern Water. (1995). Microtox Acute Toxicity Basic Test Procedure. https://www.modernwater.com/assets/Technical%20Support/Toxicity/Manuals/ACUTE%20User's%20Manual.pdf. Accessed November 2021

  • Monteagudo, J. M., El-taliawy, H., Durán, A., Caro, G., & Bester, K. (2018). Sono-activated persulfate oxidation of diclofenac: Degradation, kinetics, pathway and contribution of the different radicals involved. Journal of Hazardous Materials, 357, 457–465.

    Article  CAS  Google Scholar 

  • Montoya-Rodríguez, D. M., Serna-Galvis, E. A., Ferraro, F., & Torres-Palma, R. A. (2020). Degradation of the emerging concern pollutant ampicillin in aqueous media by sonochemical advanced oxidation processes - Parameters effect, removal of antimicrobial activity and pollutant treatment in hydrolyzed urine. Journal of Environmental Management, 261, 110224. https://doi.org/10.1016/j.jenvman.2020.110224

    Article  CAS  Google Scholar 

  • Okitsu, K., Iwasaki, K., Yobiko, Y., Bandow, H., Nishimura, R., & Maeda, Y. (2005). Sonochemical degradation of azo dyes in aqueous solution: A new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes. Ultrasonics Sonochemistry, 12(4), 255–262.

    Article  CAS  Google Scholar 

  • Park, M. A., Hwang, K. A., Lee, H. R., Yi, B. R., Jeung, E. B., & Choi, K. C. (2013). Benzophenone-1 stimulated the growth of BG-1 ovarian cancer cells by cell cycle regulation via an estrogen receptor alpha-mediated signaling pathway in cellular and xenograft mouse models. Toxicology, 305, 41–48. https://doi.org/10.1016/j.tox.2012.12.021

    Article  CAS  Google Scholar 

  • Ramos, S., Homem, V., Alves, A., & Santos, L. (2016). A review of organic UV-filters in wastewater treatment plants. Environment International, 86, 24–44. https://doi.org/10.1016/j.envint.2015.10.004

    Article  CAS  Google Scholar 

  • Rao, Y., Yang, H., Xue, D., Guo, Y., Qi, F., & Ma, J. (2016). Sonolytic and sonophotolytic degradation of Carbamazepine: Kinetic and mechanisms. Ultrasonics Sonochemistry, 32, 371–379.

    Article  CAS  Google Scholar 

  • Smith, A. J., Barber, J., Davis, S., Jones, C., Kotra, K. K., Losada, S., et al. (2021). Aquatic contaminants in Solomon Islands and Vanuatu: Evidence from passive samplers and Microtox toxicity assessment. Marine Pollution Bulletin, 165, 112118. https://doi.org/10.1016/J.MARPOLBUL.2021.112118

    Article  CAS  Google Scholar 

  • Sun, X., Wei, D., Liu, W., Geng, J., Liu, J., & Du, Y. (2019). Formation of novel disinfection by-products chlorinated benzoquinone, phenyl benzoquinones and polycyclic aromatic hydrocarbons during chlorination treatment on UV filter 2,4-dihydroxybenzophenone in swimming pool water. Journal of Hazardous Materials, 367, 725–733. https://doi.org/10.1016/j.jhazmat.2019.01.008

    Article  CAS  Google Scholar 

  • Torres-Palma, R. A., & Serna-Galvis, E. A. (2018). Sonolysis. Advanced Oxidation Processes for Waste Water Treatment, 177–213.

  • US EPA (2021). Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11. United States Environmental Protection Agency, Washington, DC, USA.

  • Vega-Garzón, L. P., Gomez-Miranda, I. N., & Peñuela, G. A. (2018). Benzophenone-3 ultrasound degradation in a multifrequency reactor: Response surface methodology approach. Ultrasonics Sonochemistry, 43, 201–207.

    Article  CAS  Google Scholar 

  • Vega, L. P., Soltan, J., & Peñuela, G. A. (2019). Sonochemical degradation of triclosan in water in a multifrequency reactor. Environmental Science and Pollution Research, 26(5), 4450–4461.

    Article  CAS  Google Scholar 

  • Villegas-Guzman, P., Silva-Agredo, J., Florez, O., Giraldo-Aguirre, A. L., Pulgarin, C., & Torres-Palma, R. A. (2017). Selecting the best AOP for isoxazolyl penicillins degradation as a function of water characteristics: Effects of pH, chemical nature of additives and pollutant concentration. Journal of Environmental Management, 190, 72–79. https://doi.org/10.1016/j.jenvman.2016.12.056

    Article  CAS  Google Scholar 

  • Wang, J., Chen, J., Qiao, X., Zhang, Y., & nan, Uddin, M., & Guo, Z. (2019). Disparate effects of DOM extracted from coastal seawaters and freshwaters on photodegradation of 2,4-Dihydroxybenzophenone. Water Research, 151, 280–287. https://doi.org/10.1016/j.watres.2018.12.045

    Article  CAS  Google Scholar 

  • Xiao, R., Diaz-Rivera, D., He, Z., & Weavers, L. K. (2013). Using pulsed wave ultrasound to evaluate the suitability of hydroxyl radical scavengers in sonochemical systems. Ultrasonics Sonochemistry, 20(3), 990–996. https://doi.org/10.1016/j.ultsonch.2012.11.012

    Article  CAS  Google Scholar 

  • Zhao, Y. H., Ji, G. D., Cronin, M. T. D., & Dearden, J. C. (1998). QSAR study of the toxicity of benzoic acids to Vibrio fischeri, Daphnia magna and carp. Science of the Total Environment, 216(3), 205–215. https://doi.org/10.1016/S0048-9697(98)00157-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Colombian Ministry of Science, Technology and Innovation (MinCiencias), and the Universidad de Antioquia for their technical support.

Funding

The study was financially supported by the Colombian Ministry of Science, Technology and Innovation (MinCiencias), and the Universidad de Antioquia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Zúñiga-Benítez.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega Garzón, L.P., Zúñiga-Benítez, H. & Peñuela, G.A. Elimination of Benzophenone-1 in Water by High-Frequency Ultrasound. Water Air Soil Pollut 232, 491 (2021). https://doi.org/10.1007/s11270-021-05443-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05443-2

Keywords

Navigation