Skip to main content

Advertisement

Log in

Ecotoxicological Assessment and Environmental Risk of the Insecticide Chlorpyrifos for Aquatic Neotropical Indicators

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Chlorpyrifos (CPF) is an organophosphorus insecticide detected in aquatic environments considered harmful to living beings. The aim of this research was to evaluate the ecotoxicity of CPF for neotropical aquatic organisms of distinct trophic levels (Lemna minor, Azolla caroliniana, and Wolffia brasiliensis macrophytes; Pomacea canaliculata snail; Macrobrachium acanthurus shrimp; Xiphophorus maculatus and Hyphessobrycon eques fish), to verify the risk of environmental poisoning for each organism, and to determine the best bioindicator species of aquatic contamination by the insecticide. Ecotoxicological assays were carried out with different concentrations of CPF under controlled laboratory conditions standardized for each species. IC50;7d, LC50;7d, EC50;48h, and LC50;48h values were calculated using the Trimmed Spearman Karber software with 95% confidence limits. The toxicity data were used to classify the CPF according to the ecotoxicity categories for aquatic organisms. The risk of CPF environmental poisoning was determined by the quotient method considering different environmental scenarios. The sensitivity order of neotropical aquatic organisms to chlorpyrifos was Macrobrachium acanthurus (0.002 mg L−1) > Xiphophorus maculatus (0.07 mg L−1) > Hyphessobrycon eques (1.65 mg L−1) > Pomacea canaliculata (30.66 mg L−1) > Azolla caroliniana (849.72 mg L−1) > Wolffia brasiliensis (1271.63 mg L−1) = Lemna minor (1299.60 mg L−1). The risk of poisoning by chlorpyriphos may vary according to the environmental concentration of the insecticide and the exposed trophic level. The best bioindicator and with the greatest risk of environmental poisoning was shrimp. The difference in CPF ecotoxicity for distinct aquatic trophic levels shows the relevance of evaluating the effects of contaminants considering food chains and highlights the importance of studying these levels in environmental monitoring programs.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data generated from the experiment.

Code Availability

Not applicable.

References

  • Abe, F. R., Machado, A. A., Coleone, A. C., Cruz, C., & Machado-Neto, J. G. (2019). Toxicity of diflubenzuron and temephos on freshwater fishes: Ecotoxicological assays with Oreochromis niloticus and Hyphessobrycon eques. Water, Air, & Soil Pollution, 230, 1–10. https://doi.org/10.1007/s11270-019-4128-7

    Article  CAS  Google Scholar 

  • ABNT (Associação Brasileira de Normas Técnicas). (2016). NBR 15088 (3th ed. p. 25). Rio de Janeiro: Ecotoxicologia aquática – Toxicidade aguda – Método de ensaio com peixes (Cyprinidae).

  • Aguinaga, J. Y., Claudiano, G. S., Marcusso, P. F., Ikefuti, C., Ortega, G. G., Eto, S. F., Cruz, C., Moraes, J. R. E., Moraes, F. R., & Fernandes, J. B. K. (2014). Acute toxicity and determination of the active constituents of aqueous extract of Uncaria tomentosa bark in Hyphessobrycon eques. Journal of Toxicology, 3, 1–5.

    Article  Google Scholar 

  • Arias, A. R. L., Buss, D. S., Alburquerque, C., Inácio, A. F., Freire, M. M., Egler, M., Mugnai, R., & Baptista, D. F. (2007). Utilização de bioindicadores na avaliação de impacto e no monitoramento da contaminação de rios e córregos por agrotóxicos. Ciência & Saúde Coletiva, 12, 61–72.

    Article  Google Scholar 

  • Bagheri, A. R., Aramesh, N., Sher, F., & Bilal, M. (2021). Covalent organic frameworks as robust materials for mitigation of environmental pollutants. Chemosphere, 270, 129523. https://doi.org/10.1016/j.chemosphere.2020.129523

    Article  CAS  Google Scholar 

  • Banaee, M., Akhlaghi, M., Soltanian, S., Gholamhosseini, A., Heidarieh, H., & Fereidouni, M. S. (2019). Acute exposure to chlorpyrifos and glyphosate induces changes in hemolymph biochemical parameters in the crayfish, Astacus leptodactylus (Eschscholtz, 1823). Comparative Biochemistry and Physiology Part c: Toxicology & Pharmacology, 222, 145–155. https://doi.org/10.1016/j.cbpc.2019.05.003

    Article  CAS  Google Scholar 

  • Barbieri, E., & Ferreira, L. A. A. (2011). Effects of the organophosphorus pesticide Folidol 600® on the freshwater fish, Nile Tilapia (Oreochromis niloticus). Pesticide Biochemistry and Physiology, 99(3), 209–214. https://doi.org/10.1016/j.pestbp.2010.09.002

    Article  CAS  Google Scholar 

  • Becker, R. W., Araújo, D. S., Sirtori, C., Toyama, N. P., Tavares, D. A., Cordeiro, G. A., Benassi, S. F., Gossen, A. C., & Amaral, B. (2021). Pesticides in surface water from Brazil and Paraguay cross-border region: Screening using LC-QTOF MS and correlation with land use and occupation through multivariate analysis. Microchemical Journal, 168, 106502. https://doi.org/10.1016/j.microc.2021.106502

    Article  CAS  Google Scholar 

  • Bertrand, L., Magdalena, D. J. M., Monferrán, V., & Améa, M. V. (2017). Can a low concentration of an organophosphorus insecticide cause negative effects on an aquatic macrophyte? Exposure of Potamogeton pusillus at environmentally relevant chlorpyrifos concentrations. Environmental and Experimental Botany, 138, 139–147. https://doi.org/10.1016/j.envexpbot.2017.03.006

    Article  CAS  Google Scholar 

  • Bhat, S. A., Bashir, O., Bilal, M., Ishaq, A., Din Dar, M. U., Kumar, R., Bhat, R. A., & Sher, F. (2021). Impact of COVID-related lockdowns on environmental and climate change scenarios. Environmental Research, 195, 110839. https://doi.org/10.1016/j.envres.2021.110839

    Article  CAS  Google Scholar 

  • Brasil. (2005). Conselho Nacional de Meio Ambiente (CONAMA). Resolução nº 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da República Federativa do Brasil, Brasília, n. 053, p. 58–63, 19 may 2005. Retrieved June 15, 2021, from http://www.mma.gov.br/port/conama/res/res05/res35705.pdf.

  • Brogan, W. R., & Relyea, R. A. (2017). Multiple mitigation mechanisms: Effects of submerged plants on the toxicity of nine insecticides to aquatic animals. Environmental Pollution, 220, 688–695. https://doi.org/10.1016/j.envpol.2016.10.030

    Article  CAS  Google Scholar 

  • Carraschi, S. P., Florencio, T., Garlich, N., Silva, A. F., Marques, A. M., Cruz, C., & Paiva, M. J. T. R. (2015). Ecotoxicology of drugs used in fish disease treatment. Journal of Environmental Chemistry and Ecotoxicology, 7(3), 31–36. https://doi.org/10.5897/JECE2015.0341

    Article  Google Scholar 

  • Castillo, L. E., Cruz, E., & Ruepert, C. (1997). Ecotoxicology and pesticides in tropical aquatic ecosystems of Central America. Environmental Toxicology and Chemistry, 16(1), 41–51. https://doi.org/10.1002/etc.5620160104

    Article  CAS  Google Scholar 

  • Chen, C., Zou, W., Cui, G., Tian, J., Wang, Y., & Ma, L. (2020). Ecological risk assessment of current-use pesticides in an aquatic system of Shanghai, China. Chemosphere, 257, 127–222. https://doi.org/10.1016/j.chemosphere.2020.127222

    Article  CAS  Google Scholar 

  • Cornejo, A., Encina-Montoya, F., Correa-Araneda, F., García, G., Nieto, C., Villareal, V., Jaramillo, N., Pérez, E., Valderrama, A., Pérez, J., & Boyero, L. (2021). High sensitivity of invertebrate detritivores from tropical streams to different pesticides. Ecotoxicology and Environmental Safety, 216, 112226. https://doi.org/10.1016/j.ecoenv.2021.112226

    Article  CAS  Google Scholar 

  • Cruz, C., Carraschi, S. P., Shiogiri, N. S., Silva, A. F., Pitelli, R. A., & Machado, M. R. F. (2016). Sensitivity, ecotoxicity and histopathological effects on neotropical fish exposed to glyphosate alone and associated to surfactant. Journal of Environmental Chemistry and Ecotoxicology, 8(3), 25–33. https://doi.org/10.5897/JECE2015.0362

    Article  Google Scholar 

  • Duft, M., Schulte-Oehlmann, U., Tillmann, M., Markert, B., & Oehlmann, J. (2003). Toxicity of triphenyltin and tributyltin to the freshwater mudsnail Potamopyrgus antipodarum in a new sediment biotest. Environmental Toxicology and Chemistry, 22(1), 145–152.

    CAS  Google Scholar 

  • Eaton, D. L., Daroff, R. B., Autrup, H., Bridges, J., Buffler, P., Costa, L. G., Coyle, J., McKhann, G., Mobley, W. C., Nadel, L., Neubert, D., Schulte-Hermann, R., & Spencer, P. S. (2008). Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Critical Reviews in Toxicology, 38(2), 1–125. https://doi.org/10.1080/10408440802272158

    Article  CAS  Google Scholar 

  • EC (European Communities). (2003). Technical guidance document in support of Commission Directive 1488/94 EEC on risk assessment for existing substances. Part II, environmental risk assessment. Luxembourg: Office for Official Publication of the European Communities.

  • EPA (United States Environmental Protection Agency). (2017). Pesticides industry sales and usage: 2008–2012 market estimates. EPA, 2017. Retrieved July 25, 2021, from https://www.epa.gov/pesticides/pesticides-industry-sales-and-usage-2008-2012-market-estimates.

  • EPA (United States Environmental Protection Agency). (2021). Technical overview of Ecological Risk Assessment—Analysis Phase: Ecological effects characterization. EPA. Retrieved September 1, 2021, from https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/technical-overview-ecological-risk-assessment-0.

  • Fan, R., Zhang, W., Li, L., Jia, L., Zhao, J., Zhao, Z., Peng, S., Yuan, X., & Chen, Y. (2021). Individual and synergistic toxic effects of carbendazim and chlorpyrifos on zebrafish embryonic development. Chemosphere, 280, 130769. https://doi.org/10.1016/j.chemosphere.2021.130769

    Article  CAS  Google Scholar 

  • Ferrario, C., Parolini, M., De-Felice, B., Villa, S., & Finizio, A. (2018). Linking sub-individual and supra-individual effects in Daphnia magna exposed to sub-lethal concentration of chlorpyrifos. Environmental Pollution, 235, 411–418. https://doi.org/10.1016/j.envpol.2017.12.113

    Article  CAS  Google Scholar 

  • Goktepe, I., Portier, R., & Ahmedna, M. (2004). Ecological risk assessment of Neem-based pesticides. Journal of Environmental Science Health Part B, 39, 311–320. https://doi.org/10.1081/PFC-120030244

    Article  CAS  Google Scholar 

  • Hall, C., Rhind, S., & Wilson, M. (2009). The potential for use of gastropod molluscs as bioindicators of endocrine disrupting compounds in the terrestrial environment. Journal of Environmental Monitoring, 11, 491–497. https://doi.org/10.1039/b804320e

    Article  CAS  Google Scholar 

  • Hamilton, M. A., Russo, R. C., & Thurston, R. V. (1977). Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environmental Science & Technology, 11, 714–719. https://doi.org/10.1021/es60140a017

    Article  CAS  Google Scholar 

  • Huanga, X., Cuib, H., & Duan, W. (2020). Ecotoxicity of chlorpyrifos to aquatic organisms: A review. Ecotoxicology and Environmental Safety, 200, 110731. https://doi.org/10.1016/j.ecoenv.2020.110731

    Article  CAS  Google Scholar 

  • IBAMA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis). Relatórios de comercialização de agrotóxicos. Retrieved July 31, 2021, from http://ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos.

  • Jeon, H. J., Lee, Y. H., Kim, M. J., Choi, S. D., Park, B. J., & Lee, S. E. (2016). Integrated biomarkers induced by chlorpyrifos in two different life stages of zebrafish (Danio rerio) for environmental risk assessment. Environmental Toxicology and Pharmacology, 43, 66–174. https://doi.org/10.1016/j.etap.2016.03.010

    Article  CAS  Google Scholar 

  • Kalantary, R. R., Barzegar, G., & Jorfi, S. (2022). Monitoring of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers using Monte Carlo simulation in Behbahan City, Iran. Chemosphere, 286, e131667. https://doi.org/10.1016/j.chemosphere.2021.131667

    Article  CAS  Google Scholar 

  • Kokta, C. & Rothert, H. A. (1992). Hazard and risk assessment scheme for evaluating effects on earthworms: The approach in the Federal Republic of Germany. In Greig-Smith, P. W., Becker, H., Edwards, P. J. & Heimbach, F. (Eds.), Ecotoxicology of earthworm (pp.169–176).

  • Kunwar, P. S., Parajuli, K., Badu, S., Sapkota, B., Sinha, A. K., Boeck, G., & Sapkota, K. (2021). Mixed toxicity of chlorpyrifos and dichlorvos show antagonistic effects in the endangered fish species golden mahseer (Tor putitora). Physiology Part c: Toxicology & Pharmacology, 240, 108923. https://doi.org/10.1016/j.cbpc.2020.108923

    Article  CAS  Google Scholar 

  • Lee, H.-J., Kim, K. Y., Hamm, S.-Y., Kim, M., Kim, H. K., & Oh, J.-R. (2019). Occurrence and distribution of pharmaceutical and personal care products, artificial sweeteners, and pesticides in groundwater from an agricultural area in Korea. Science of the Total Environment, 659, 168–176. https://doi.org/10.1016/j.scitotenv.2018.12.258

    Article  CAS  Google Scholar 

  • Maggio, S. A., Janney, P. K., & Jenkins, J. J. (2021). Neurotoxicity of chlorpyrifos and chlorpyrifos-oxon to Daphnia magna. Chemosphere, 276, 130120. https://doi.org/10.1016/j.chemosphere.2021.130120

    Article  CAS  Google Scholar 

  • Martín, P., Burela, S., Seuffert, M., Tamburi, N., & Saveanu, L. (2019). Invasive Pomacea snails: Actual and potential environmental impacts and their underlying mechanisms. CAB Reviews, 14, 1–11. https://doi.org/10.1079/pavsnnr201914042

    Article  Google Scholar 

  • Mello, F. A., Fagiani, M. B. A., Rossi e Silva, R. C., & Nai, G. A. (2019). Agrotóxicos: Impactos ao meio ambiente e à saúde humana. Colloquium Vitae, 11(2), 37–44.

    Article  Google Scholar 

  • Moretto, A. (2014). Pesticide residues: Organophosphates and carbamates. In Y. Motarjemi (Ed.), Encyclopedia of food safety (1st ed., pp. 19–22). Academic Press. https://doi.org/10.1016/B978-0-12-378612-8.00237-7

    Chapter  Google Scholar 

  • OECD (Organization for Economic Co-Operation and Development). (2002) Lemna sp. growth inhibition test. In GUIDELINE for testing of chemicals. OECD

  • Padilla, S., & Glaberman, S. (2020). Chapter 37—The zebrafish (Danio rerio) model in toxicity testing. In C. N. Pope & J. Liu (Eds.), An introduction to interdisciplinary toxicology (1st ed., pp. 525–532). Academic Press. https://doi.org/10.1016/B978-0-12-813602-7.00037-5

    Chapter  Google Scholar 

  • Pereira, P. C., Brunetti, I. A., Castro, K. S., Chiarotti, L. F., Santos, B. E., Moraes, J. C., & Cruz, C. (2019). Acute toxicity of herbicides and sensibility of aquatic plant Wolffia brasiliensis as a bioindicator organism. Planta Daninha, 37, 1–8. https://doi.org/10.1590/S0100-83582019370100092

    Article  Google Scholar 

  • Rajput, P., Sinha, R. K., & Devi, P. (2021). Chapter 8—Current scenario of pesticide contamination in water. In A. Ahamad & P. Singh (Eds.), Contamination of water: Health risk assessment and treatment strategies (1st ed., pp. 109–119). Academic Press. https://doi.org/10.1016/B978-0-12-824058-8.00032-3

    Chapter  Google Scholar 

  • Rasheed, T., Shafi, S., Bilal, M., Hussain, T., Sher, F., & Rizwan, K. (2020). Surfactants-based remediation as an effective approach for removal of environmental pollutants—A review. Journal of Molecular Liquids, 318, 113960. https://doi.org/10.1016/j.molliq.2020.113960

    Article  CAS  Google Scholar 

  • Raymundo, L. B., Rocha, O., Moreira, R. A., Miguel, M., & Daam, M. A. (2019). Sensitivity of tropical cladocerans to chlorpyrifos and other insecticides as compared to their temperate counterparts. Chemosphere, 220, 937–942. https://doi.org/10.1016/j.chemosphere.2019.01.005

    Article  CAS  Google Scholar 

  • Rivadeneira, P. R., Agrelo, M., Otero, S., & Kristoff, G. (2013). Different effects of subchronic exposure to low concentrations of the organophosphorus insecticide chlorpyrifos in a freshwater gastropod. Ecotoxicology and Environmental Safety., 90, 82–88. https://doi.org/10.1016/j.ecoenv.2012.12.013

    Article  CAS  Google Scholar 

  • Rousis, N. I., Bade, R., Bijlsma, L., Zuccato, E., Sancho, J. V., Hernandez, F., & Castiglioni, S. (2017). Monitoring a large number of pesticides and transformation products in water samples from Spain and Italy. Environmental Research, 156, 31–38. https://doi.org/10.1016/j.envres.2017.03.013

    Article  CAS  Google Scholar 

  • Salomão, G. R., Américo-Pinheiro, J. H. P., Isique, W. D., Torres, N. H., Cruz, I. A., & Ferreira, L. F. R. (2019). Diclofenac removal in water supply by adsorption on composite low-cost material. Environmental Technology, 1, 1–17. https://doi.org/10.1080/09593330.2019.1692078

    Article  CAS  Google Scholar 

  • San Juan, M. R. F., Cortelezzi, A., Albornoz, C. B., Landro, S. M., Arrighetti, F., Najle, R., & Lavarías, S. M. L. (2020). Toxicity of pyrethroid cypermethrin on the freshwater snail Chilina parchappii: Lethal and sublethal effects. Ecotoxicology and Environmental Safety, 196, 110565. https://doi.org/10.1016/j.ecoenv.2020.110565

    Article  CAS  Google Scholar 

  • Satapornvanit, K., Baird, D. J., Little, D. C., Milwain, G. K., Van den Brink, P. J., Beltman, W. H., Nogueira, A. J., Daam, M. A., Domingues, I., Kodithuwakku, S. S., Perera, M. W. P., Amararatne Yakupitiyage, A., Sureshkumar, S. N., & Taylor, G. J. (2004). Risks of pesticide use in aquatic ecosystems adjacent to mixed vegetable and monocrop fruit growing areas in Thailand. Australasian Journal of Ecotoxicology, 10, 85–95.

    CAS  Google Scholar 

  • Schneiker, J., Weisser, W. W., Settele, J., Sinh, N. V., Bustamante, J. V., Marquez, L., Villareal, S., Arida, G., Chien, H. V., Heong, K. L., & Türke, M. (2016). Is there hope for sustainable management of golden apple snails, a major invasive pest in irrigated rice? NJAS - Wageningen Journal of Life Sciences, 79(63), 11–21. https://doi.org/10.1016/j.njas.2016.07.001

    Article  Google Scholar 

  • Schweikert, K., & Burritt, D. J. (2012). The organophosphorus insecticide Coumaphos induces oxidative stress and increases antioxidant and detoxification defences in the green macroalgae Ulva pertusa. Aquatic Toxicology, 122, 86–92. https://doi.org/10.1016/j.aquatox.2012.05.003

    Article  CAS  Google Scholar 

  • Silva-De-Sá, R. J., Souza, A. G. S., Jesus, E. S., & Júnior, A. P. (2019). Biological indicators of water quality and climate changes. Multidisciplinary Reviews, 2, 3–9. https://doi.org/10.29327/multi.2019006

    Article  Google Scholar 

  • Souza, J. P., Medeiros, L. S., Winkaler, E. U., & Machado-Neto, J. G. (2011). Acute toxicity and environmental risk of diflubenzuron to Daphnia magna, Poecilia reticulata and Lemna minor in the absence and presence of sediment. Pesticidas: Revista De Ecotoxicologia e Meio Ambiente, 21, 1–12.

    Google Scholar 

  • Storto, D., Nara, L. B. C., Kozusny-Andreani, D. I., Vanzela, L. S., Mansano, C. F. M., Bilal, M., Iqbal, H. M. N., & Américo-Pinheiro, J. H. P. (2021). Seasonal dynamics of microbial contamination and antibiotic resistance in the water at the Tietê Ecological Park, Brazil. Water, Air, & Soil Pollution, 232(257), 1–18. https://doi.org/10.1007/s11270-021-05207-y

    Article  CAS  Google Scholar 

  • Sumon, K. A., Rashid, H., Peeters, E. T. H. M., Bosma, B. H., & Van Den Brink, P. J. (2018). Environmental monitoring and risk assessment of organophosphorus pesticides in aquatic ecosystems of north-west Bangladesh. Chemosphere, 206, 92–100. https://doi.org/10.1016/j.chemosphere.2018.04.167

    Article  CAS  Google Scholar 

  • Sun, K. F., Xu, X. R., Duan, S. S., Wang, Y. S., Cheng, H., Zhang, Z. W., Zhou, G. J., & Hong, Y. G. (2015). Ecotoxicity of two organophosphorus pesticides chlorpyrifos and dichlorvos on non-targeting cyanobacteria Microcystis wesenbergii. Ecotoxicology, 24, 1498–1507. https://doi.org/10.1007/s10646-015-1458-0

    Article  CAS  Google Scholar 

  • Tallarico, L. F. (2015). Freshwater gastropods as a tool for ecotoxicology assessments in Latin America. American Malacological Bulletin, 33(2), 1–7. https://doi.org/10.4003/006.033.0220

    Article  Google Scholar 

  • Tien, C. J., & Chen, C. S. (2012). Assessing the toxicity of organophosphorous pesticides to indigenous algae with implication for their ecotoxicological impact to aquatic ecosystems. Journal of Environmental Science and Health, Part B Pesticides, Food Contaminants, and Agricultural Wastes, 47(9), 901–912. https://doi.org/10.1080/03601234.2012.693870

    Article  CAS  Google Scholar 

  • Torres, N. H., Santos, G. O. S., Ferreira, L. F. R., Américo-Pinheiro, J. H. P., Eguiluz, K. I. B., & Salazar-Banda, G. R. (2021). Environmental aspects of hormones estriol, 17b-estradiol and 17a-ethinylestradiol: Electrochemical processes as next-generation technologies for their removal in water matrices. Chemosphere, 267(128888), 1–15. https://doi.org/10.1016/j.chemosphere.2020.128888

    Article  CAS  Google Scholar 

  • Venturini, F. P., Cruz, C., & Pitelli, R. A. (2008). Toxicidade aguda do sulfato de cobre e do extrato aquoso de folhas secas de nim para o caramujo (Pomacea canaliculata). Acta Scientiarum. Biological Sciences, 30(2), 179–184. https://doi.org/10.4025/actascibiolsci.v30i2.3615

    Article  CAS  Google Scholar 

  • Wang, T., Zhong, M., Lu, M., Xu, D., Xue, Y., Huang, J., Blaney, L., & Yu, G. (2021). Occurrence, spatiotemporal distribution, and risk assessment of current-use pesticides in surface water: A case study near Taihu Lake, China. Science of the Total Environment, 782, 146826. https://doi.org/10.1016/j.scitotenv.2021.146826

    Article  CAS  Google Scholar 

  • Wee, S. Y., & Aris, A. Z. (2017). Ecological risk estimation of organophosphorus pesticides in riverine ecosystems. Chemosphere, 188, 575–581. https://doi.org/10.1016/j.chemosphere.2017.09.035

    Article  CAS  Google Scholar 

  • Zeng, L., Wang, Y., Jing, L., & Cheng, Q. (2021). Quantitative determination of auxiliary information for mapping soil heavy metals and soil contamination risk assessment. Applied Geochemistry, 130, 104964. https://doi.org/10.1016/j.apgeochem.2021.104964

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Laboratory of Ecotoxicology and Pesticide Efficacy of the Barretos—Brazil for the laboratory support necessary for this research.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

MBLM: Conceptualization, Methodology, Software, Investigation, Resources, Writing—Original Draft, Writing—Review & Editing, Funding acquisition. IAB: Investigation, Resources, Methodology. CAF: Investigation, Resources, Methodology. CdC: Conceptualization, Methodology, Software, Formal analysis, Data Curation, Funding acquisition, Writing—Original Draft, Project administration. HMNI: Writing—Original Draft, Writing—Review & Editing, Visualization. MB: Writing—Original Draft, Writing—Review & Editing, Visualization. JHPA-P: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data Curation, Writing—Original Draft, Writing—Review & Editing, Visualization, Supervision, Project administration.

Corresponding author

Correspondence to Juliana Heloisa Pinê Américo-Pinheiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, M.B.L., Brunetti, I.A., Faleiros, C.A. et al. Ecotoxicological Assessment and Environmental Risk of the Insecticide Chlorpyrifos for Aquatic Neotropical Indicators. Water Air Soil Pollut 232, 428 (2021). https://doi.org/10.1007/s11270-021-05369-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05369-9

Keywords

Navigation