Skip to main content

Advertisement

Log in

Aluminium and Iron Contamination of Soil, Leaf Litter and Bioindicators in Selected South African Forest Pockets

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Forests within major cities, such as Table Mountains, Afromontane forests, are constantly subjected to industrial and urban pollution sources. Cape Town is one of the most profound areas in the world for plant extinction and already has a high occurrence of threatened species. The objective of this study was to determine the concentrations of the metals, aluminium and iron, commonly emitted from anthropogenic activities in key forest organisms (mosses, lichens and millipedes), soil and leaf litter in three forests (Platbos, Orange Kloof and Newlands) in the Western Cape, South Africa. In general, the metal concentrations increased with traffic volumes and traffic behaviour (frequent braking and acceleration). Factors, such as the locations of the sites and forests, wind and different accumulation abilities of bioindicators had a notable impact, as did the natural geological origin of aluminium and iron. Of significance in this study was the metal contamination in forests in close proximity of the centre of the city Cape Town.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdul-Wahab, S. A., & Yaghi, B. (2004). Total suspended dust and heavy metal levels emitted from a workplace compared with nearby residential houses. Atmospheric Environment, 38(5), 745–750.

    Article  CAS  Google Scholar 

  • Aboal, J. R., Couto, C., Fernández, J. A., & Carballeira, A. (2006). Definition and number of subsamples for using mosses as biomonitors of airborne trace elements. Archives of Environmental Contamination and Toxicology, 50(1), 88–96.

    Article  CAS  Google Scholar 

  • Agnan, Y., Séjalon-Delmas, N., & Probst, A. (2014). Origin and distribution of rare earth elements in various lichen and moss species over the last century in France. Science of the Total Environment, 487, 1–12.

    Article  CAS  Google Scholar 

  • Allen, A. G., Nemitz, E., Shi, J. P., Harrison, R. M., & Greenwood, J. C. (2001). Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmospheric Environment, 35, 4581–4591.

    Article  CAS  Google Scholar 

  • Amato, F., Pandolfi, M., Moreno, T., Furger, M., Pey, J., Alastuey, A., Bukowiecki, N., Prevot, A. S. H., Baltensperger, U., & Querol, X. (2011). Sources and variability of inhalable road dust particles in three European cities. Atmospheric Environment, 45(37), 6777–6787.

    Article  CAS  Google Scholar 

  • Anderson, J. M., & Bignell, D. E. (1982). Assimilation of 14C-labelled leaf fibre by the millipede Glomeris marginata (Diplopoda: Glomeridae). Pedobiologia, 23(2), 120–125.

    Google Scholar 

  • Apeagyei, E., Bank, M. S., & Spengler, J. D. (2011). Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atmospheric Environment, 45(13), 2310–2323.

    Article  CAS  Google Scholar 

  • Armstrong, R., & Bradwell, T. (2010). Growth of crustose lichens: A review. Geografiska Annaler Series A Physical Geography, 92(1), 3–17.

    Article  Google Scholar 

  • Bargagli, R., & Nimis, P. L. (2002). Guidelines for the use of epiphytic lichens as biomonitors of atmospheric deposition of trace elements. In P. L. Nimis, C. Scheidegger, & P. A. Wolseley (Eds.), Monitoring with Lichens — Monitoring Lichens. NATO Science Series Springer, Dordrecht, Series IV. Earth and Environmental Sciences, 7, 295–299.

  • Bargagli, R., Monaci, F., Borghini, F., Bravi, F., & Agnorelli, C. (2002). Mosses and lichens as biomonitors of trace metals. A comparison study on Hypnum cupressiforme and Parmelia caperata in a former mining district in Italy. Environmental Pollution, 116(2), 279–287.

    Article  CAS  Google Scholar 

  • Basile, A., Sorbo, S., Aprile, G., Conte, B., & Cobianchi, R. C. (2008). Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen. Environmental Pollution, 151(2), 401–407.

    Article  CAS  Google Scholar 

  • Bedano, J. C., Cantu, M. P., & Daucet, M. E. (2006). ‘Influence of three different land management practices on soil mite (Arachnida: Acari) densities in relation to a neutral soil. Applied Soil Ecology, 32(3), 293–304.

    Article  Google Scholar 

  • Bekteshia, L., Lazob, P., Qarric, F., & Stafilovd, T. (2015). Application of the normalization process in the survey of atmospheric deposition of heavy metals in Albania through moss biomonitoring. Ecological Indicators, 56, 50–59.

    Article  CAS  Google Scholar 

  • Bloemen, M. L., Markert, B., & Lieth, H. (1995). The distribution of Cd, Cu, Pb and Zn in topsoils of Osnabrück in relation to land use. Science of the Total Environment, 166(1/3), 137–148.

    Article  CAS  Google Scholar 

  • Boquete, M. T., Fernández, J. A., Aboal, J. R., & Carballeira, A. (2011). Analysis of temporal variability in the concentrations of some elements in the terrestrial moss Pseudoscleropodium purum. Environtal Experimental Botany, 72(2), 210–216.

    Article  CAS  Google Scholar 

  • Brun, C. B., Peltola, P., Åström, M. E., & Johansson, M.-B. (2010). Spatial distribution of major, trace and ultra-trace elements in three Norway spruce (Picea abies) stands in boreal forests. Forsmark, Sweden. Geoderma, 159(3/4), 252–261.

    Article  CAS  Google Scholar 

  • Conti, M. E. (2002) Il Biological monitoring of environmental quality. SEAM Editions, Rome, 180.

  • Da Silva Souza, T., Christofoletti, C. A., Bozzatto, V., & Fontanetti, C. S. (2014). The use of diplopods in soil ecotoxicology—A review. Ecotoxicology and Environmental Safety, 103, 68–73.

    Article  CAS  Google Scholar 

  • DAFF, (2011) Natural Forests’, [online] http://www.daff.gov.za/daffweb3/Branches/Forestry-Natural-Resources-Management/Woodlands-and-Indigenous-Forest-Management/Forests/Natural-Forests (accessed 8 June 2015).

  • Drabek, O., Boruvka, L., Mladkova, L., & Kocarek, M. (2003). Possible method of aluminium speciation in forest soils. Journal Inorganic Biochemistry, 97(1), 8–15.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Han, Y., Chen, C. Y., Evers, D. C., Lambert, K. F., Holsen, T. M., Kamman, N. C., & Munson, R. K. (2007). Mercury contamination in forest and freshwater ecosystems in the north eastern United States. Biological Sciences, 57(1), 17–28.

    Google Scholar 

  • Fernandez, J. A., Aboal, J. R., Couto, J. A., & Carballeira, A. (2002). Sampling optimization at the sampling-site scale for monitoring atmospheric deposition using moss chemistry. Atmospheric Environment, 36(7), 1163–1172.

    Article  CAS  Google Scholar 

  • Gandois, L., & Probst, A. (2012). Localisation and mobility of trace metal in silver fir needles. Chemosphere, 87(2), 204–210.

    Article  CAS  Google Scholar 

  • Gandois, L., Tipping, E., Dumat, C., & Probst, A. (2010). Canopy influence on trace metal atmospheric inputs on forest ecosystems: speciation in throughfall. Atmospheric Environment, 44, 824–833.

    Article  CAS  Google Scholar 

  • Gandois, L., Agnan, Y., Leblond, S., Séjalon-Delmas, N., Le Roux, G., & Probst, A. (2014). Use of geochemical signatures, including rare earth elements, in mosses and lichens to assess spatial integration and the influence of forest environment. Atmospheric Environment, 95, 96–104.

    Article  CAS  Google Scholar 

  • Garimella, S., & Deo, R. N. (2008). Characterization of aerosols generated in a steel processing factory. South Pacific Journal of Natural Science, 25(1), 78–82.

    Article  Google Scholar 

  • Greensdale, P. (2007). The potential of Collembolla to act as indicators of landscape stress in Australia, ISSN 18360939. Australian Journal of Experimental Agriculture, 47, 424–434.

    Article  Google Scholar 

  • Handler, M., Puls, C., Zbiral, J., Marr, I., Puxbaum, H., & Limbeck, A. (2008). Size and composition of particulate emissions from motor vehicles in the Kaisermühlen-Tunnel, Vienna. Atmospheric Environment, 42, 2173–2186.

    Article  CAS  Google Scholar 

  • Harmens, H., Norris, D. A., Sharps, K., Mills, G., Alber, R., Aleksiayenak, Y., Blum, O., Cucu-Man, S.-M., Dam, M., Temmerman, L., De, A., Ene, A., Fernandez, J. A., Martinez-Abaigar, J., Frontasyeva, M., Godzik, B., Jeran, Z., Lazo, P., Leblond, S., Liiv, S., Magnússon, S., Mankovsk, H. B., Karlsson, G. P., Piispanen, J., Poikolainen, J., Santamaria, J. M., Skudnik, M., Spiric, Z., Stafilov, T., Steinnes, E., Stihi, C., Suchara, I., Thöni, L., Todoran, R., Yurukova, L., & Zechmeister, H. G. (2015). Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environmental Pollution, 200, 93–104.

    Article  CAS  Google Scholar 

  • Hopkin, S. P. (1989). Ecophysiology of Metals in Terrestrial Invertebrates, Elsevier. London and New York. Applied Science.

  • Hristovskia, S., Bergb, B., & Melovskia, L. (2014). Limitless decomposition in leaf litter of Common beech: Patterns, nutrients’ and heavy metal’s dynamics. Pedobiologia, 57, 131–138.

    Article  Google Scholar 

  • Hurme, E., Mönkkönen, M., Sippola, A. L., Ylinen, H., & Pentinsaari, M. (2008). Role of the Siberian flying squirrel as an umbrella species for biodiversity in northern boreal forests. Ecol Indic, 8, 246–255.

    Article  Google Scholar 

  • Jacques, D., Mallants, D., Simünek, J., & Van Genuchten, T. M. (2008). Modelling the fate of uranium from inorganic phosphorus fertilizer applications in agriculture. In L. J. De Kok & E. Schnug (Eds.), Loads and Fate of Fertilizer-derived Uranium (pp. 57–64). Backhuys Publishers.

  • Johansson, C., Norman, M., & Burman, L. (2009). Road traffic emission factors for heavy metals. Atmospheric Environment, 43(31), 4681–4688.

    Article  CAS  Google Scholar 

  • Kang, J. H., Keller, J. J., Chen, C. S., & Lin, H. C. (2012). Asian dust storm events are associated with an acute increase in pneumonia hospitalization. Annals Epidemiology, 22(4), 257–263.

    Article  Google Scholar 

  • Kluge, B., Werkenthin, M., & Wessolek, G. (2014). Metal leaching in a highway embankment on field and laboratory scale. Science of the Total Environment, 493, 495–504.

    Article  CAS  Google Scholar 

  • Kříbek, B., Majer, V., Veselovský, F., & Nyambe, I. (2010). Discrimination of lithogenic and anthropogenic sources of metals and sulphur in soils in the central northern part of the Zambian Copperbelt Mining District: A topsoil vs. subsurface soil concept. Journal of Geochemical Exploration, 104, 69–85.

    Article  CAS  Google Scholar 

  • Kupiainen, K. (2007) Road dust from pavement wear and traction sanding. Monogram of Boreal Environmental Research, 26 Doctoral Dissertation, 8-39.

  • Magiera, T., Strzyszcz, Z., & Rachwal, M. (2007). ‘Mapping particulate pollution loads using soil magnetometry in urban forests in the Upper Silesia Industrial Region, Poland. Forests and Ecological Management, 248(1), 36–42.

    Article  Google Scholar 

  • McCrink-Goode, M. (2014). Pollution: a global threat. Environmental International, 68, 162–170.

    Article  CAS  Google Scholar 

  • McLaughlin, S. B., & Percy, K. E. (1999). Forest health in North America: Some perspectives on potential roles of climate and air pollution. Water Air and Soil Pollution, 116, 151–197.

    Article  CAS  Google Scholar 

  • Nikula, S., Vapaavuori, E., & Manninen, S. (2010). Urbanization-related changes in European aspen (Populus tremula L.): Leaf traits and litter decomposition. Environmental Pollution, 158(6), 2132–2142.

    Article  CAS  Google Scholar 

  • Odendaal, J. P., & Reinecke, A. J. (1999). The sublethal effects and accumulation of cadmium in the terrestrial isopod Porcellio laevis Latr. (Crustacea, Isopoda). Archives of Environmental Contamination and Toxicology, 36(1), 64–69.

    Article  CAS  Google Scholar 

  • Pant, P., & Harrison, R. M. (2012). Critical review of receptor modelling for particulate matter: A case study of India. Atmospheric Environment, 49, 1–12.

    Article  CAS  Google Scholar 

  • Peachey, C. J., Sinnett, D., Wilkinson, M., Morgan, G. W., Freer-Smith, P. H., & Hutchings, T. R. (2009). Deposition and solubility of airborne metals to four plant species grown at varying distances from two heavily trafficked roads in London. Environmental Pollution, 157(8/9), 2291–2299.

    Article  CAS  Google Scholar 

  • Pierson, W. R., & Brachaczek, W. W. (1983). Particulate matter associated with vehicles on the road, II. Aero Science and Technology, 2(1), 1–40.

    Article  CAS  Google Scholar 

  • Platbos (2016) Platbos Forest Africa’s Southernmost Forest [online] http://www.platbos.co.za/platbos_forest.html (accessed 23 March 2016).

  • Pruski, A. M., & Dixon, D. R. (2002). Effects of cadmium on nuclear integrity and DNA repair efficiency in the gill cells of Mytilus edulis L. Aquatic Toxicology, 57(3), 127–137.

    Article  CAS  Google Scholar 

  • Rebelo, A. G., Boucher, C., Helme, N. A., Mucina, L., Rutherford, M. C., Powrie, L. W., & Mucina, L. (2006). Fynbos biome. In: Mucina, L., Rutherford, M. C. (Eds.), The Vegetation of South Africa, Lesotho and Swaziland. Strelitzia, 19, 52–219.

  • Richardson, J. B., Donaldson, E. C., Kaste, J. M., & Friedland, A. J. (2015). Forest floor lead, copper and zinc concentrations across the north eastern United States: Synthesizing spatial and temporal responses. Science, 505, 851–859.

    CAS  Google Scholar 

  • Sacharová, J., & Suchara, I. (1998). Atmospheric deposition levels of chosen elements in the Czech Republic determined in the framework of the International Bryomonitoring Program 1995. Science of the Total Environment, 225, 32–50.

    Google Scholar 

  • SANBI, (2016) Giant Pill Millipede [online] http://www.sanbi.org/creature/giant-pill-millipede (accessed 23 September 2016).

  • SA-Venues.com (2017) Seven ancient forests in and around Cape Town [online] http://blog.sa-venues.com/provinces/western-cape/forests-cape-town/ (accessed 3 June 2017).

  • Schaub, M., Matyssek, R., & Wieser, G. (2010). Preface to the special issue of the IUFRO conference on air pollution and climate. Environmental Pollution, 158(6), 1985.

    Article  CAS  Google Scholar 

  • Schauer, J. J., Lough, G. C., Shafer, M. M., Christensen, W. F., Arndt, M. F., DeMinter, J. T., & Park, J. S. (2006). Characterization of metals emitted from motor vehicles. Health Effects Institute, 133, 1–88.

    Google Scholar 

  • Selonen, S., & Setälä, H. (2015). Soil processes and tree growth at shooting ranges in a boreal forest reflect contamination history and lead-induced changes in soil food webs. Science of the Total Environment, 518-519, 320–327.

    Article  CAS  Google Scholar 

  • Shridhar, V., Khillare, P. S., Agarwal, T., & Ray, S. (2010). Metallic species in ambient particulate matter at rural and urban location of Delhi. Hazardous Materials, 175, 600–607.

    Article  CAS  Google Scholar 

  • Singh, N., Thompson, S., Van Weele, G. (2013) State of Environment Outlook Report for the Western Cape Province. Climate Change Chapter – For public comment. [online] eadp.Westerncape.gov.za/.../2013.../state-of-environment-outlook-report- introductory-matter.pdf (accessed 5 July 2014).

  • Slemr, F., Brunke, E. G., Ebinghaus, R., & Kuss, F. (2011). World-wide trend of atmospheric mercury since 1995. Atmospheric Chemicals and Physics, 11, 2355–2375.

    Google Scholar 

  • Sorenson, J. R. J., Campbell, I. R., Tepper, L. B., & Lingg, R. D. (1974). Aluminum in the environment and human health. Environmental Health Perspectives, 8, 3–95.

    Article  CAS  Google Scholar 

  • Stafilov, T., Sajn, R., Pencevski, Z., Boev, B., Frontasyeva, M. V., & Strelkova, L. P. (2010). Heavy metal contamination of topsoils around a lead and zinc smelter in the Republic of Macedonia. Journal of Hazardous Materials, 175(1/3), 896–914.

    Article  CAS  Google Scholar 

  • Steinnes, E., & Friedland, A. J. (2005). Metal contamination of natural surface soils from long-range atmospheric transport: Existing and missing knowledge. Environmental Reviews, 14(3), 169–186.

    Article  Google Scholar 

  • Tallis, M., Taylor, G., Sinnett, D., & Freer-Smith, P. (2011). Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landscape and Urban Planning, 103(2), 129–138.

    Article  Google Scholar 

  • USGS. (1984). Element concentrations in soils and other surficial materials of the conterminous. In Geological Survey Professional Paper 1270. U.S. Geological Survey.

  • Wood, J., Low, A. B., Donaldson, J. S., & Rebelo, A. G. (1994). Threats to plant species diversity through urbanization and habitat fragmentation in the Cape Metropolitan Area, South Africa. In: Huntley, B.J. (Ed.), Botanical diversity in Southern African. Strelitzia, 1, 259–274.

  • Xing, G. X., Zhu, J. G., Xiong, Z. Q., & Yamasaki, S. (2004). Ag, Ta, Ru, and Ir enrichment in surface soil: evidence for land pollution of heavy metal from atmospheric deposition. Global Biochemical and Geochemical Cycles, 18.

  • Yang, T., Liu, Q., Zeng, Q., & Chan, L. (2012). Relationship between magnetic properties and heavy metals of urban soils with different soil types and environmental settings: Implications for magnetic mapping. Environmental Earth Sciences, 66, 409–420.

    Article  CAS  Google Scholar 

  • Zhang, H., Yin, R., Feng, X., Sommar, J., Anderson, C. W. N., Sapkota, A., Fu, X., & Larssen, T. (2013). Atmospheric mercury inputs in montane soils increase with elevation: Evidence from mercury isotope signatures. Scientific Republic-Uk, 3, 1–8.

    Google Scholar 

Download references

Acknowledgements

We wish to thank the Cape Peninsula University of Technology for funding. We also wish to thank the following organizations and people for granting permits, analysis of samples and identification of the sentinel organisms: Deborah Jean Winterton (SANParks), Francois and Melissa Krige (Platbos forest), Riana Rossouw (ICP laboratory, University of Stellenbosch), Bemlab, Professor Terry Hedderson (University of Cape Town), Dr Andre Aptroot (ABL Herbarium, Netherlands) and Michelle Hamer (SANBI).

Funding

This study was funded by the Cape Peninsula University of Technology

Author information

Authors and Affiliations

Authors

Contributions

Anne-Liese Naudé acquired a PhD in Environmental Health at the Cape Peninsula University of Technology. Her background is horticulture and landscaping, which expanded to environmental pollution, in particular, ecotoxicology. Her research interest is in metal contamination, specifically in forests, using bioindicators and has a keen interest in the conservation of, especially urban forests for the environment and human health.

Prof James Philander Odendaal: James Odendaal holds a PhD in the field of ecotoxicology, with an emphasis on soil metal contamination. His research interest is in the bioaccumulation and toxicity of metals in invertebrates in the soil and aquatic environments. His research interests further include the toxic interactions between metal pollutants.

Prof Reinette Georgenie Snyman: Reinette Snyman, with a PhD in the field of ecotoxicology has a keen research interest in the sustainable management of local faunal biodiversity. Her research interests further include soil, freshwater and marine ecosystems, a variety of inorganic and organic pollutants, the use of both animals and plants as biomonitors, and a range of cellular, physiological and biochemical biomarkers.

Corresponding author

Correspondence to Anne-Liese Naudé.

Ethics declarations

I Anne-Liese Naudé declare that the contents of this article represents my own unaided work and own opinions and not necessarily those of the Cape Peninsula University of Technology

Ethics Approval and Consent to Participate

N/A.

Consent for Publication

N/A.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naudé, AL., Snyman, R.G. & Odendaal, J.P. Aluminium and Iron Contamination of Soil, Leaf Litter and Bioindicators in Selected South African Forest Pockets. Water Air Soil Pollut 232, 304 (2021). https://doi.org/10.1007/s11270-021-05246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05246-5

Keywords

Navigation