Skip to main content
Log in

A Rapid Approach to Measure Extracted Chlorophyll-a from Lettuce Leaves using Electrical Impedance Spectroscopy

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Chlorophyll-a is a highly measured metric in water quality and plant health monitoring. Current laboratory-based methods exploit spectroscopic techniques and require expensive instrumentation like spectrophotometer or fluorometer. In this work, a rapid approach has been proposed using electrical impedance spectroscopy (EIS) to measure chlorophyll-a that is extracted from lettuce leaves into 95% (v/v) ethanol. Multiple readings of 70 differently concentrated samples were taken, and the corresponding impedances were measured using the proposed EIS system by varying frequency from 1.5 to 7.5 kHz. Pearson coefficient, variance inflation factor (VIF), and backward elimination were used to identify the significant component of the frequency. Finally, a multiple linear regression model with 11 features in the range of 2.3 kHz to 4.7 kHz was chosen based on the lowest root mean square error (RMSE) and mean absolute error (MAE). The results show high index of positive determination of chlorophyll-a with the coefficient of determination being 0.932, RMSE of 1.05 μgL-1, and MAE of 0.904 μgL-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aminot, A., & Rey, F. (2000). Standard procedure for the determination of chlorophyll a by spectroscopic methods. International Council for the Exploration of the Sea.

  • Basak, R., Wahid, K., & Dinh, A. (2020a). Determination of leaf nitrogen concentrations using electrical impedance spectroscopy in multiple crops. Remote Sensing, 12(3), 1–18.

    Article  Google Scholar 

  • Basak, R., Wahid, K. A., Dinh, A., Soolanayakanahally, R., Fotouhi, R., & Mehr, A. S. (2020b). Rapid and efficient determination of relative water contents of crop leaves using electrical impedance spectroscopy in vegetative growth stage. Remote Sens., 12(11), 1–15.

    Article  Google Scholar 

  • Bondarenko, A. S., & Ragoisha, G. A. (2005). Progress in Chemometrics Research. New York: Nova Science Publishers.

    Google Scholar 

  • Chowdhury, R. I., Wahid, K. A., Nugent, K., & Baulch, H. (2020). Design and development of low-cost, portable, and smart chlorophyll-a sensor. IEEE Sensors, 20(13), 7362–7371.

    Article  CAS  Google Scholar 

  • Domagalski, J., et al. (2007). Eutrophication study at the Panjiakou-Daheiting Reservoir system, northern Hebei Province, People’s Republic of China: Chlorophyll-a model and sources of phosphorus and nitrogen. Agricultural Water Management, 94(1-3), 43–53.

    Article  Google Scholar 

  • Dos Santos, A., et al. (2003). Comparison of three methods for chlorophyll determination : Spectrophotometry and Fluorimetry in samples containing pigment mixtures and spectrophotometry in samples with separate pigments through High Performance Liquid Chromatography. Acta Limnologica Brasiliensia, 15, 7–18.

    Google Scholar 

  • Fu, W., Li, P., & Wu, Y. (2012). Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Sci. Hortic. (Amsterdam)., 135, 45–51.

    Article  CAS  Google Scholar 

  • Gregor, J., & Maršálek, B. (2004). Freshwater phytoplankton quantification by chlorophyll. Water Research, 38(3), 517–522.

    Article  CAS  Google Scholar 

  • Grossi, M., & Riccò, B. (2017). Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: A review. Journal of Sensors and Sensor Systems, 6(2), 303–325.

    Article  Google Scholar 

  • Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W., & Strickland, J. D. H. (1965). Fluorometric determination of chlorophyll. ICES Journal of Marine Science, 30(1), 3–15.

    Article  CAS  Google Scholar 

  • Hosikian, A., Lim, S., Halim, R., & Danquah, M. K. (2010). Chlorophyll extraction from microalgae: a review on the process engineering aspects. Internation Journal of Chemical Engineering, 2010, 1–11.

    Article  Google Scholar 

  • Islam, M., Wahid, K., & Dinh, A. (2018). Assessment of ripening degree of avocado by electrical impedance spectroscopy and support vector machine. Journal of Food Quality, 2018, 1–9.

    Article  Google Scholar 

  • Islam, M., Wahid, K. A., Dinh, A. V., & Bhowmik, P. (2019). Model of dehydration and assessment of moisture content on onion using EIS. Journal of Food Science and Technology, 56(6), 2814–2824.

    Article  CAS  Google Scholar 

  • Jodlowska, S., & Latala, A. (2011). The comparison of spectrophotometric method and high-performance liquid chromatography in photosynthetic pigments analysis. OnLine Journal of Biological Sciences, 11(2), 63–69.

    Article  CAS  Google Scholar 

  • Lan, S., Wu, L., Zhang, D., Hu, C., & Liu, Y. (2011). Ethanol outperforms multiple solvents in the extraction of chlorophyll-a from biological soil crusts. Soil Biology and Biochemistry, 43(4), 857–861.

    Article  CAS  Google Scholar 

  • León, A. P., Viña, S. Z., Frezza, D., Chaves, A., & Chiesa, A. (2007). Estimation of chlorophyll contents by correlations between SPAD-502 meter and chroma meter in butterhead lettuce. Commun. Soil Sci. Plant Anal., 38, 2877–2885.

    Article  Google Scholar 

  • Lichtenthaler, H. K., et al. (2015). Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data. IEEE Sensors, 15(1), 8710–8723.

    Google Scholar 

  • Louda, J. W., & Monghkonsri, P. (2004). Comparison of spectrophotometric and HPLC estimations of chlorophylls-a , - b , -c and pheopigments in Florida Bay Seston. Florida Scientist, 67(4), 281–292.

    CAS  Google Scholar 

  • Moya, I., et al. (2004). A new instrument for passive remote sensing: 1. Measurements of sunlight-induced chlorophyll fluorescence. Remote Sensing of Environment, 91(2), 186–197.

    Article  Google Scholar 

  • Pavlovic, D., Nikolic, B., Djurovic, S., Waisi, H., Andjelkovic, A., & Marisavljevic, D. (2014). Chlorophyll as a measure of plant health: Agroecological aspects. Pesticidi i fitomedicina, 29(1), 21–34.

    Article  CAS  Google Scholar 

  • Pinckney, J., Papa, R., & Zingmark, R. (1994). Comparison of high-performance liquid chromatographic, spectrophotometric, and fluorometric methods for determining chlorophyll a concentrations in estaurine sediments. Journal of Microbiological Methods, 19(1), 59–66.

    Article  CAS  Google Scholar 

  • Pinto, A. M. F., Von Sperling, E., & Moreira, R. M. (2001). Chlorophyll-a determination via continuous measurement of plankton fluorescence: Methodology development. Water Research, 35(16), 3977–3981.

    Article  CAS  Google Scholar 

  • Proctor, C. W., & Roesler, C. S. (2010). New insights on obtaining phytoplankton concentration and composition from in situ multispectral Chlorophyll fluorescence. Limnology and Oceanography: Methods, 8, 695–708.

    CAS  Google Scholar 

  • Ritchie, R. J. (2006). Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis Research, 89(1), 27–41.

    Article  CAS  Google Scholar 

  • Schreiber, U., Müller, J. F., Haugg, A., & Gademann, R. (2002). New type of dual-channel PAM chlorophyll fluorometer for highly sensitive water toxicity biotests. Photosynthesis Research, 74(3), 317–330.

    Article  CAS  Google Scholar 

  • Suggett, D. J., Prasil, O., & Borowitzka, M. A. (2010). Chlorophyll a fluorescence in aquatic sciences: methods and application. Springer.

  • Sutter, J. M., & Kalivas, J. H. (1993). Comparison of Forward Selection, Backward Elimination, and Generalized Simulated Annealing for Variable Selection. Microchem. J., 47, 60–66.

    Article  CAS  Google Scholar 

  • Thomas, S., Thomas, R., Zachariah, A. K., & Mishra, R. K. (2017). Spectroscopic Methods for Nanomaterials Characterization, Matthew Deans.

  • Vello, T. P., De Oliveira, R. F., Silva, G. O., De Camargo, D. H. S., & Bufon, C. C. B. (2017). A simple capacitive method to evaluate ethanol fuel samples. Scientific Reports, 7(1), 1–7.

    Article  Google Scholar 

  • Vernon, L. P. (1960). Spectrophotometry Determination of Chlorophylls and Pheophytins in Plant Extracts. Analytical Chemistry, 32(9), 1144–1150.

    Article  CAS  Google Scholar 

  • Vollenweider, R. A., & Kerekes, J. (1982). Eutrophication of Waters: Monitoring. Paris: Assessment and Control.

    Google Scholar 

  • Vu, D. H., Muttaqi, K. M., & Agalgaonkar, A. P. (2015). A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables. Appl. Energy, 140, 385–394.

    Article  Google Scholar 

  • Wintermans, J. F. G. M., & De Mots, A. (1965). Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta (BBA) - Biophysics including Photosynthesis, 109(2), 448–453.

    Article  CAS  Google Scholar 

  • Wong, T. T., & Yeh, P. Y. (2020). Reliable Accuracy Estimates from k-Fold Cross Validation. IEEE Trans. Knowl. Data Eng., 32(8), 1586–1594.

    Article  Google Scholar 

  • Xue, L., & Yang, L. (2009). Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance. ISPRS J. Photogramm. Remote Sens., 64(1), 97–106.

    Article  Google Scholar 

  • Yadav, S., & Shukla, S. (2016). Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. Proc. - 6th Int. Adv. Comput. Conf. IACC, 78–83.

  • Zabrotowicz, E. J., Arczewska, M., Zubik, M., Terpilowski, K., Skrzypek, T. H., Swietlicka, I., & Gagos, M. (2019). Cremophor EL Nano-Emulsion Monomerizes Chlorophyll a in Water Medium. Biomolecules, 9(12), 1–18.

    Google Scholar 

  • Zamzam, N, & Thor, J. J. V. (2019). Excited state frequencies of chlorophyll f and chlorophyll a and evaluation of displacement through franck-condon progression calculations. Molecules, 24(7), 1-15.

  • Zeng, L., & Li, D. (2015). Development of in situ sensors for chlorophyll concentration measurement. Journal of Sensors, 2015, 1–16.

    Article  Google Scholar 

  • Zipser, L. (1993). Selectivity of sensor systems. Sensors and Actuators: A Physical, 37-38, 286–289.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinku Basak.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, R.I., Basak, R., Wahid, K.A. et al. A Rapid Approach to Measure Extracted Chlorophyll-a from Lettuce Leaves using Electrical Impedance Spectroscopy. Water Air Soil Pollut 232, 73 (2021). https://doi.org/10.1007/s11270-021-05036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05036-z

Keywords

Navigation